<u> PROBLEM 3.1</u> $f(z)$ y (+) = h +) * x (+) = $x(r)h(t-r)dr$ (t) x(t) = u(t-2) - - ∞ $-y(t) = u(t-2)u(t-r)dt = |t|dt$ $i_{0}(t) = \begin{cases} 0, t < 2 \\ t-2, t \ge 2 \end{cases} = (t-2)u(t-2)$ $(i\lambda)$ $x(t) = e^{-2t}u(t)$ $y(t) = \int_{\infty}^{\infty} e^{-2\tau} u(\tau) u(t-\tau) = \int_{0}^{t} e^{-2\tau} d\tau$ $y(t) = \frac{1}{2}(1-e^{-2t})u(t)^{0}$ $LLL)$ x l + = t u (+) $y(t) = \int_{0}^{\infty} \tau u(\tau)u(t-\tau) d\tau = \int_{0}^{\tau} \tau d\tau = \frac{1}{2}\tau^{2}$ $y(t) = \frac{1}{2}t^{2}u(t)$ $\mathcal{L}(\nu)$ x $\mathcal{L}(t) = (t+1) \mathcal{U}(t+1)$ $y(t) = \int (z+1)u(z+1)u(t-z)dz = (z+1)dz$ $=\left(\frac{1}{2}\zeta^{2}+\zeta\right)\Big)^{2}=\frac{1}{2}\zeta^{2}+\zeta-\frac{1}{2}+1$ $y(t)= (t t^2 + t + \frac{1}{2})u(t + \iota)$ $(v-r) - \chi_{(t)} = e^{-2|t|}$, $g(t) = \int e^{-2|t|} t(t-t) dt$ $y(t) = \int e^{-\lambda |t|} d\tau$ for $t < 0$, $y(t) = \int_{0}^{0} e^{2t} d\tau = \frac{1}{2} e^{2t}$, $t < 0$ $f_{ov}t \ge 0$, $y(t) = \int e^{2\tau} 4\tau + \int e^{-2\tau} 4\tau = 1 - \frac{1}{2}e^{2\tau} 2\tau$ © Pearson Education Limited, 2015.

7.7
\n7.8
\n7.8
\n8.8
\n8.9
\n
$$
(1, 1) \quad x(t) = t^2 a(t) + \frac{1}{2} \int_0^t t^2 d\tau = \frac{1}{3}t^3 u(t)
$$
\n
$$
(1, 1) \quad x(t) = (t-1)u(t-1)
$$
\n
$$
(1, 1) \quad x(t) = (t-1)u(t-1)
$$
\n
$$
y(t) = (\frac{1}{2}t^2 - t^2)u(t-1)
$$
\n
$$
y(t) = (\frac{1}{2}t^2 - t + \frac{1}{2})u(t-1)
$$
\n
$$
(1, 1) \quad x(t) = u(t) - u(t-1)
$$
\n
$$
(1, 1) \quad x(t) = u(t) - u(t-1)
$$
\n
$$
y(t) = (t-1)u(t-1)
$$
\n
$$
y(t) = t - t + 5 = 5, t \ge 5
$$
\n
$$
y(t) = 0, t < 0
$$
\n
$$
y(t) = 0, t < 0
$$
\n
$$
y(t) = 0, t < 0
$$
\n
$$
y(t) = 0, t < 0
$$
\n
$$
y(t) = 0, t < 0
$$
\n
$$
y(t) = \frac{t}{2}u(t) + \frac{t}{2} - \frac{t}{2}u(t-1)
$$
\n
$$
y(t) = \frac{t}{2}u(t) - \frac{t}{2}u(t-1)u(t-1)
$$
\n
$$
y(t) = \frac{t}{2}u(t) - \frac{t}{2}u(t-1)u(t-2)
$$
\n
$$
y(t) = \frac{t}{2}u(t) - \frac{t}{2}u(t-1)u(t-2)
$$
\n
$$
y(t) = -\frac{1}{2}e^{-2t}u(t)dx = \frac{1}{2}e^{-2t}u(t-1)u(t-1)
$$
\n
$$
y(t) = -\frac{1}{2}e^{-2t}u(t)dx = \frac{1}{2}e^{-2t}u(t)dx
$$
\n
$$
y(t) = -\frac{1}{2}e^{-2t}u(t) + \frac{1}{2}e^{-2t}u(t)
$$
\n
$$
y(t) = -\frac{1}{
$$

PROBLEM 3.2 7×10^{-7} $\frac{1}{2}$ hit $\underline{\omega}$ $\frac{1}{2}$ $t-4$ $t-z$ $y(t) = 4 \int \sin \pi \tau d\tau = -4 \cos \pi \tau$ $= -\frac{4}{7} [1 - C_0 \sqrt{1 + C_0}]$, 2<t<3 $y(t) = 4 \int sin\pi t dt = -\frac{4}{\pi} cos\pi t | = 8,3264$ $y(t) = 4 \int \sin \pi z d\tau = 4 \int \cos \pi (t-4) + 1]42225$ $y(t) = 0, t22$ and $t > 5$ 2 / h (e) (b) $9(t) = 7 \int_{0}^{t_{2}} \frac{t_{2}}{t} = 4 \tau \Big|_{t_{2}}^{t_{2}} = 4t - 8, 2 \leq t_{2} 4$ $y(t) = 4 \int d\tau = 4\tau|^2 = 24-4t$, $4 \le t \le 6$
 $t-4$
 $t-4$ $y(t) = 0, t < 2,$ and $t > 6$

© Pearson Education Limited, 2015.

7 **EXECUTE:** (a)
$$
\frac{1}{2} \cos \pi t \, dt = \frac{2}{\pi} \sin \pi t \int_{0}^{1} \frac{e}{\pi} \sin \pi t \, dt
$$

\n
$$
= \int_{0}^{1} \cos \pi t \, d\tau = \frac{2}{\pi} \sin \pi t \int_{0}^{1} \frac{e}{\pi} \sin \pi t \, dt
$$
\n
$$
= \int_{0}^{1} 2 \cos \pi t \, d\tau = \frac{2}{\pi} \sin \pi t \Big|_{0}^{1} = 0, 14 \pm 2
$$
\n
$$
= \int_{0}^{1} 2 \sin \pi t \, dt = \frac{2}{\pi} \sin \pi t \Big|_{0}^{1} = -\frac{2}{\pi} \sin \pi t \Big|_{0}^{1} = 0, 14 \pm 2
$$
\n
$$
= \frac{1}{\pi} 2 \sin \pi t
$$
\n
$$
= \frac{1}{\pi} 2 \sin \pi t
$$
\n
$$
= \frac{1}{\pi} 2 \sin \pi t
$$
\n
$$
= \frac{1}{\pi} 2 \sin \pi t
$$
\n
$$
= \frac{1}{\pi} 2 \sin \pi t
$$
\n
$$
= \frac{1}{2} 2 \sin(\pi t)
$$
\n<math display="</p>

 $y^{[t]=90}$, $t < 0$

= t , $0 < t < 1$

= 1 , $1 < t < 2$

= $1 + (t-2) = t-1$, $2 < t < 3$

= 2 , $3 < t$

$$
\frac{\text{Prob}(e \text{ in } \mathbb{F}_{\alpha})}{t} = 0;
$$
\n(a)
$$
t = 0;
$$
\n
$$
h(\tau)x(-\tau) = 0 \text{ for all } \tau, \text{ so } y(0) = \int_{-\infty}^{\infty} h(\tau)x(-\tau)d\tau = 0.
$$
\n
$$
t = 1;
$$
\n
$$
h(\tau)x(1-\tau) = -2(-2) = 4 \text{ for } 0 \le \tau < 1
$$
\nand = 0 elsewhere,\n
$$
\text{so } y(1) = \int_{-\infty}^{\infty} h(\tau)x(1-\tau)d\tau = \int_{0}^{1} 4d\tau = 4.
$$
\n
$$
t = 2;
$$
\n
$$
h(\tau)x(2-\tau) = -2(2) = -4 \text{ for } 0 \le \tau < 2
$$
\nand = 0 elsewhere,\n
$$
\text{so } y(2) = \int_{0}^{2} -4d\tau = -8.
$$
\n
$$
t = 2.667;
$$
\n
$$
h(\tau)x(2.667 - \tau) = -2(2) = -4 \text{ for } 0.667 \le \tau < 1,
$$
\n
$$
= 2(2) = 4 \text{ for } 1 \le \tau < 1.667,
$$
\n
$$
= -4 \text{ for } 0.667 \le \tau < 1,
$$
\n
$$
= 2(2) = 4 \text{ for } 1 \le \tau < 2,
$$
\nand = 0 elsewhere.\n
$$
\text{Therefore } y(2.667) = (-4)(1 - 0.667) + 4(1.667 - 1) - 4(2 - 1.667) = -8(0.333) + 4(0.666) = 0.
$$

$$
h(\tau)
$$
 (blue) and $x(-\tau)$ (green)

1 τ $\frac{1}{2}$ $\frac{1}{3}$ $-3-2-1$

 $h(\tau)$ (blue) and $x(2-\tau)$ (green)

 $h(\tau)$ (blue) and $x(2.667 - \tau)$ (green)

PROBLEM 3.8 (a) $n(t) = e^t u(-t)$ $\frac{u(t-t)}{h(t)}$ (1) t) 2 no overlup ... $\gamma(t) = 0$
 $\frac{u(t)}{h(t)}$ (2) 1 st s 2 $\gamma(t) = \int_{0}^{2} e^{t-t} dt = e^{t} \int_{0}^{2} e^{t} dt$ $\gamma(t)=e^{\frac{t}{c}-\frac{t}{c}-2}=1-e^{\frac{t}{c}-2}$ 3 $0\leq t\leq 1$, $\gamma(t)=2\int e^{t-\tau}d\tau+\int e^{t-\tau}d\tau=2(1-e^{t-1})$ $+e^{t}(\vec{e}^{1}-\vec{e})=2-\vec{e}^{t-1}+\vec{e}^{2}$ (4) $t\leq o$, $\gamma(t)=2\int e^{t-z}dz+\int e^{t-z}dz$ $=2(e^{t} - e^{t}) + e^{t} (e^{t} - e^{t}) = 2e^{t} - e^{t}$ $f: \gamma(t) = (1 - e^{t-2}) [u(t-1) - u(t-2)] + (2 - e^{t-1} - e^{t-2})$ $(u(t)-u(t-1))+(2e^{-t}-e^{-t-2})u(-t)$ (b) $x(t-t)$ $h(t)$ $\chi(t)$ 1 τ + ϵ -1 τ

1 τ + ϵ -1 τ

1 τ + ϵ -1 τ

2 τ -1 $\langle 1 \text{ or } t \langle 2 \rangle$, $\gamma(t) = \int_{0}^{\infty} e^{-\tau} d\tau = e^{-t}$
 τ γ -(t-1) (2) $t-1$ >1 or t) 2 $y(t) = \int e^{-t} dt = -e^{-t} = e^{-t}$ $\vec{y}(t) = e'(u(2-t))te^{-(t-1)}u(t-2)$ © Pearson Education Limited, 2015.

Problem 3.8 (Continued) $f(t) = \int_{0}^{t} e^{-t} dt = -e^{-t} e^{400}$

(1) $f(t) = \int_{0}^{t} e^{-t} dt = -e^{-t} e^{400}$

(2) $f(t) = \int_{0}^{t} e^{-t} dt = e^{-t} - e^{-400}$

(3) $f(t) = 0$ $f(t) = 0$ $f(t) = 0$ $f(t) = 0$ $\begin{matrix} (d) \ H \end{matrix}$ $\begin{matrix} \mathcal{U}(t-z) \ h(t) \end{matrix}$ 1 $(\frac{1}{2})$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{2}$ $= e^{-(t-3)} - (t-1)$
 $= e^{-(t-1)} - e^{-t-1}$
 $= e^{-(t-1)} - u(t-3) + ...$ $(e^{-(t-3)} - e^{-(t-1)})$ u(t-3) © Pearson Education Limited, 2015.

PROBLEM 3.9

 $n_1(t) = 2u(t+2) - 2u(t-2)$ $h(\tau)$ $\begin{array}{|c|c|c|c|}\hline 2 & \pi(t) & \pi(t-t) & & & & \pi(t) \\ \hline 2 & t & & & & \downarrow & & \downarrow & & \downarrow & \downarrow \\ \hline \end{array}$ -2 ① $t+2\langle -4, 2\angle -6 , 2\angle +2) = 0$ $2 - 45t + 250$, $-65t - 2$ $\mathcal{J}(t) = \int_{0}^{t+2} \frac{z}{2 e d\tau} = 2 \left[\frac{t+2}{e} - e^{-t} \right]$ (3) $0 \leqslant t+2 \leqslant 4$, $-2 \leqslant t \leqslant 2$ $J(t) = 2 \int e^{t} d\zeta + 2 \int^{t+2} e^{-t} d\zeta = 2 \int_{1-e}^{t-2}$ t_{-2} $+2[1-e^{-(t+2)}]$ \bigoplus $0 \leq t - 2 \leq 4$, $2 \leq t \leq 6$ $\gamma(t) = \int_{0}^{4} e^{-t} dz = 2 \left[e^{-(t-2)} - e^{-(t-2)} \right]$ ϵ - 2 $\circled{5}$ $t\geqslant 6$) $\gamma(t)=0$

Problem 3.11

3.11
\n(a)
$$
h(t) = h_1(t) * h_2(t) = \int_{0}^{\infty} e^{-t}u(t) \cdot e^{-t}u(t-t)dt
$$

\n $= 4e^{-t} \int_{0}^{t} d\tau = 4t e^{-t}u(t)$
\n(b) $h(t) = 8(t) * 8(t) * 5e^{-t}x(t-s) = 4e(t-s)$
\n(c) $h(t) = 28(t-s) * (u(t-s) - u(t-s))$
\n(d) $(u(t-t) - u(t-s)) * (u(t-t) - u(t-s))$
\n $= 0 \qquad , t < 2$
\n $\int_{0}^{t} u(t) \cdot d\tau = t-2, 2 \le t < 6$
\n $= 5$
\n(e) $\int_{0}^{t} u(t) \cdot d\tau = 10 - t, 6 \le t < 10$
\n $\Rightarrow \int_{t-s}^{t} u(t) \cdot d\tau = 10 - t, 6 \le t < 10$
\n $\Rightarrow (t-s) [u(t-s) - u(t-s)]$
\n $+ (10-t) [u(t-s) - u(t-s)]$

PROBLEM 3.12

(a) It (t) is the autput of the ith System $J_1(t)$ =h $_1(t)$ + n(t) $J_2(t) = N_1(t) * \chi(t)$
 $J_2(t) = h_2(t) * \chi(t) = h_1(t) * h_2(t) * \chi(t)$ $\mathcal{J}_3(t)$ = h₁(t) * h3(t) + x(t) $J_5(t)$ = h5(t) + x(t) $J(t)=J_2(t)+J_4(t)=J_2(t)+[y_3(t)+y_5(t)]*h_4(t)$ $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$ (b) h(t)=u(t)*56(t)+u(t)*56(t)*u(t) now $u(t) * e^{-2t}u(t)$
 $u(t) * e^{-2t}u(t) = \int u(t) e^{-2(t-t)}dt$ $\int_{0}^{t} e^{-2(t-t)} dt = e^{-2t} \int_{0}^{t} e^{2t} dt = \int_{2}^{t} [1-e^{2t}]^{2} dt$: $h(t) = 5u(t) + 5tu(t) + \frac{1}{2}(1 - e^{-2t})u(t)$

Problem 3.13 (Costinuced)	
(C)	Bbcck 1 = Block 3 = amplitude of 3
Block 2 = Block 3 = amplitude of 3	
Bbcck 5 = int = $left$ and $right$ in the $right$.	
(d)	$7n_1 = 2S(t)$ $\sqrt{n_2} = 2S(0) + u(t) = 2u(t)$
(e)	$7n_1 = 26(t)$ $\sqrt{n_2} = 2S(0) + u(t) = 2u(t)$
$m_1 = 4S(t) + u(t) = 4U(t)$	
$m_2 = 4S(t) + u(t) = 8u(t)$	
$m_3 = 4S(t) + 2u(t) = 8u(t)$	
$m_4 = 4U(t) = 4u(t)$	
(e)	$S(t)$ $h(t) = 4u(t)$

\nExample 2.1

 $ProBEm 3.14$

a) $x(t)=\delta(t)$ -> $y(t)=h(t)$ $z(t) = x(t - z)$ $h(t)=S(t-T)$ b) $\gamma(t) = \int \chi(t - z) dz$ $\zeta(t-7)$ $h(t) = \int_{-\infty}^{t} \delta(z - \overline{z}) d\zeta$ $\frac{1}{7}$ $\begin{array}{l} \n t \prec \tau \end{array}$, h(t) =0
 $\begin{array}{l} \n t \rightarrow \tau \end{array}$
 $\begin{array}{l} \n t \rightarrow \tau \end{array}$, h(t) =1 \therefore h(t) =4(t-7) c) $g(t) = \int_{-\infty}^{t} \left[\int_{-\infty}^{6} \chi(\tau - \tau) d\tau \right] d\zeta$ lit $\chi(t) = \delta(t)$ $h(t) = \int_{s-t}^{t} \int_{s}^{t} \delta(z-z)dz \] d\epsilon = \int u(t-1)dt$ $u(6 - 7)$

 $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{7}$ $\therefore h(t) = (t - 7) u(t - 7)$

PROBLEM 3.15 let $\mathbf{x}(t-z) = \begin{cases} 1 & h(z) > 0 \\ -1 & h(z) < 0 \end{cases}$: \mathbf{x} is $\mathcal{J}(t) = \mathcal{X}(t) * h(t) = \int h(t) \mathcal{X}(t-t) dt$ $h(\tau)x(t-\tau) = \begin{cases} h(\tau), h(\tau), \ h(\tau), h(\tau), \end{cases}$ $\therefore h(t) \mathbf{x}(t-z) = |h(z)|$ $Y(t) = \int h(t) dt$ which is assumed Unhounded
- System is not BIBO stable © Pearson Education Limited, 2015.

3.16 . Problem

a) x(t)=
$$
\delta(t)
$$
, y(t)=h(t), so y(t)=x(t-9),h(t)= $\delta(t-9)$
\nb) y(t) = $\int_{-\infty}^{t} x(\tau-9)d\tau$,
\n $h(t) = \int_{-\infty}^{t} \delta(\tau-9)d\tau$,
\nif t<9, h(t)=0
\nif t>9, h(t)=1
\nTherefore h(t)=u(t-9)
\nc) y(t) = $\int_{-\infty}^{t} \int_{-\infty}^{\sigma} x(\tau-9)d\tau d\sigma$ let x(t)= $\delta(t)$
\n $h(t) = \int_{-\infty}^{t} \int_{-\infty}^{\sigma} x(\tau-9)d\tau d\sigma = \int_{-\infty}^{\sigma} u(\tau-9)d\tau$
\nt<9, h(t)=0
\n $\int_{-\infty}^{t} \int_{-\infty}^{t} d\sigma = (t-9)$
\nTherefore h(t)=(t-7)u(t-7)

d)
$$
x(t)=\delta(t), y(t)=h(t),
$$
 so $y(t)=x(t+9), h(t)=\delta(t+9)$

Problem 3.17 Linear

- a) Not time invariant
- b) $\delta(t) = \sin(4t)\delta(t) = 1 \delta(t) = \delta(t)$
- c) $\delta(t-\pi/2)$ =sin4t $\delta(t-\pi/2)$ =sin($\pi/2$) $\delta(t-\pi/2)$ =1 $\delta(t)$ =1

3.18 Problem

- a) Stable,casual
- b) Not Stable,casual
- c) Stable, not casual
- d) Not Stable, not casual
- e) Stable, not casual
- f) Stable, casual
- g) Stable, casual
- h) Stable, casual

PROBLEM 3.19 $y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} x(\tau) d\tau$ $g(z) = \int_{\infty}^{z} e^{-(t-T)}$ sind $\tau = \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0 \end{cases} = \frac{e^{-t}u(t)}{t}$ (b) y/a , $h(t)=0$, $t<0$ (c) $y(t) = \int_{0}^{t} e^{-(t-t)} u(t+t) d\tau = \int_{0}^{t} e^{-t} e^{t} d\tau$ $= e^{-t}(e^{\gamma t}) = e^{-t}(e^{-t}-e^{-t})u^{\gamma t}$ = $[1 - e^{-(kt)}]u(t+1)$ (d) ytt=h(t)* $5t$)-h(t)* $5t$ (-1)* $5t$) $= h(t)$ $x5H$) $-h(t-1)5H$) = $h(t)$ $-h(t-1)$ $=\frac{e^{-t}u(t)-e^{-(kt-1)}u(t-1)}{t-t}$ (e) (i) $y(t) = y_c(t) - y_c(t) \Big|_{t+t+1}$ (iii) $y(t) = h(t) + u(t+1) - [1 - e^{-t}]u(t+1)$
 (iii) $y(t) = h(t) + u(t+1) = \int_{-\infty}^{\infty} u(t - t+1)[e^{-t}u(t) - e^{(t+1)}u(t+1)]dt$ $I_0 = \int_{0}^{\infty} e^{-t}u(t+t) dt - e^t \int_{0}^{\infty} t^{2}u(t+t) dt = I_1 - I_2$
 $I_1 = \int_{0}^{t+1} e^{-t}dt = e^{-T} \int_{0}^{t+1} = [1 - e^{-t}t^{2}u(t+1)]u(t+1)$
 $I_2 = e^{t} \int_{t}^{t+1} e^{-t}dt = e^{t}(-e^{-t}) \int_{1}^{t+1} = e^{t} (e^{-t} - e^{-t}t^{2}u)u(t)$ = $(1-e^{-t})u(t)$: $y(t) = [1 - e^{-\langle t|}]\mu(t) - [1 - e^{-t}]\mu(t)$

3.20.

3.20
\n(a)
$$
y(t) = \int_{0}^{t} e^{C(t-T)} x(T-1) dT
$$

\n(b) $x(t) = \int_{0}^{t} e^{C(t-T)} x(T-1) dT$
\n $= e^{C(t-T)} u(t-1)$
\n $y(t) = 0$ $\int_{0}^{t} e^{C(t-T)} x(T-1) dT$
\n $= e^{C(t-T)} u(t-1)$
\n $y(t) = 0$ $\int_{0}^{t} e^{C(t-T)} x(T-1) dT$
\n $= e^{C(t-T)} u(t-1)$
\n $= e^{C(t-T)} u(t-1) dT$
\n<

3.20
\n0.
$$
y(t) = \int_{0}^{\infty} e^{-2(t-T)} x(T-1) dT
$$

\n(1) h(t) = $\int_{-\infty}^{\infty} e^{-2(t-T)} 8(T-1) dT = e^{-2(t-1)}$
\n(1) h(t) $\neq 0$, $t < 0$... now could
\n(1) i) $\int_{-\infty}^{\infty} |e^{-2(t-T)}| dt = \int_{-\infty}^{\infty} e^{-2t} e^{2t} dt$
\n $= e^{2} \left(e^{-2t} \right)$
\nunbounded : $unstable^{-2}$

3.21 Problem

3.22 Problem

(a) Non casual
\n(b) Stable
\n(c)
\n
$$
y(t) = h(t)^* \delta(t-3) - 2h(t)^* \delta(t-5) = h(t-3) - 2h(t-5)
$$
\n
$$
= [u(t-3) - 2u(t+1) + u(t-5)] - 2[u(t-5) - 2u(t-1) + u(t-7)]
$$

3.23. Problem

(a)
$$
(t-l-2)u(t-l-2) = (t-3)u(t-3)
$$

\n(b) $x(t)=1$ if $t>1$, $h(t) = 1$ if $t>2$

3.24 Problem

- a) Casual since $h(t)=0$ when $t<0$
- b) Stable
- c) Not casual and not stable

(i) Characteristic equation: $s + 3 = 0$, solution $s = -3$ $\implies y_c(t) = Ce^{-3t}u(t)$ Forced response of the form: $y_p(t) = Pu(t)$ where $\frac{dy_p(t)}{dt} + 3y_p(t) = 3u(t)$ \implies 0+3Pu(t) = 3u(t) \implies P = 1 $y(t) = y_c(t) + y_n(t) = (Ce^{-3t} + 1)u(t)$ Need $y(0) = C + 1 = -1 \implies C = -2$ \implies $u(t) = (-2e^{-3t} + 1)u(t)$ This clearly satisfies the differential equation and initial conditions because $\frac{dy(t)}{dt} + 3y(t) = 6e^{-3t} + 3(-2e^{-3t} + 1) = 3, t > 0$ $y(0) = -2e^{-3.0} + 1 = -1$

(ii) Characteristic equation: $s + 3 = 0$, solution $s = -3$ $\implies y_c(t) = Ce^{-3t}u(t)$ Forced response of the form $y_p(t) = Pe^{-2t}u(t)$ where $\frac{dy_p(t)}{dt} + 3y_p(t) = 3e^{-2t}u(t)$ $\implies (-2P+3P)e^{-2t}u(t) = 3e^{-2t}u(t) \implies P = 3$ **The Case of the Contract of the** $y(t) = y_c(t) + y_p(t) = (Ce^{-3t} + 3e^{-2t})u(t)$ Need $y(0) = C + 3 = 2 \implies C = -1$ \implies $y(t) = (3e^{-2t} - e^{-3t})u(t)$ This clearly satisfies the differential equation and initial conditions since $\frac{dy(t)}{dt} + 3y(t) = (-6e^{-2t} + 3e^{-3t}) + 3(3e^{-2t} - e^{-3t}) = 3e^{-2t}, t > 0$ $y(0) = 3e^{-2.0} - e^{-3.0} = 2$

(iii) Characteristic equation: S+10 =0
 \Rightarrow yclt) = $\vec{c} = \vec{b} + 10 = \vec{c}$
 $y_p(t) = \vec{c} = \vec{c} - \vec{c}$
 $\Rightarrow -\vec{c} = \vec{c} + 10 \vec{c} = \vec{c} = \vec{c}$ $y(t) = \frac{1}{9}e^{-t} + ce^{-10t}$ $t \ge 0$ $y(t) = 4C + C$, $T \ge 0$
 $y(0) = 4 + C = 2$ => $C = 2 - V_9 = 17$
 $y''(t) = \frac{1}{9}e^{-t} + \frac{17}{9}e^{-t/12}$ = $y(0) = 2V$ $\frac{dy(t)}{dt} = -\frac{1}{q}e^{-\frac{t}{q}} - \frac{170}{q}e^{-10t}$
 $\frac{d^2t}{dt^2} - \frac{1}{q}e^{-\frac{t}{q}} - \frac{170}{q}e^{-10t} + \frac{10}{q}e^{-\frac{t}{q}} + \frac{170}{q}e^{-10t} = e^{-\frac{t}{q}}$

© Pearson Education Limited, 2015.

7.25 (Contrives)
\n
$$
(40) Chayc fersfc gya t (20) = 5² + 65 + 5 = 0
\n(g) (5+5) (5+1) = 5² + 65 + 5 = 0
\n(g) (5) = 5² + 6 = 0
\n(g) (5) = 5² + 6 = 0
\n4² + 6 =
$$

 $\overline{\mathbb{R}^2}$

T H.

4 dk.

PROBLEM 3.25 (continued)
\n(vi) Characteristic equation : -10S +10S = 0
\n⇒ 5 = 1
\n
$$
Qc(E) = C_1e^{E}
$$
 $Qp(E) = P_{c}Q_{c}(E)+P_{c}sin(k)$
\n+10 [Rsin (e) -P_{c}Q_{c}(E)] +10 [P_{c}log(E)+P_{c}sin(k)]
\n=80 Q_{05}t₂ + 20
\n $Q_{c}(E) = 0$ ⇒ P_{c} + P_{c} = 0
\n $Q_{c}(E) = 0$ ⇒ P_{c} + P_{c} = 0
\n $Q_{c}(E) = 0$ ⇒ P_{c} + P_{c} = 0
\n $Q_{c}(E) = 0$ ⇒ P_{c} + P_{c} = 0
\n $Q_{c}(E) = 0$ ⇒ P_{c} + P_{c} = 0
\n $Q_{c}(E) = 0$ ⇒ P_{c} + P_{c} = 0
\n $Q_{c}(E) = -10e^{E} + C_{c}Q_{c}(E) - 5in(k)$
\n $Q_{c}(E) = -11e^{E} + C_{c}S_{c} + -4in(k)$ ⇒ $Q_{c}(E) = -10$
\n $Q_{c}(E) = -11e^{E} + C_{c}S_{c} + -4in(k)$ ⇒ $Q_{c}(E) = -10$
\n $Q_{c}(E) = -11e^{E} + C_{c}S_{c} + -4in(k)$ ⇒ $Q_{c}(E) = -10$
\n $Q_{c}(E) = -11e^{E} + C_{c}S_{c} + C_{c} = 0$
\n $Q_{c}(E) = 0$ ⇒ $Q_{c}(E) = 0$
\n $Q_{c}(E$

ProtsLEM 3.25 (Vii) Continued) $y(t) = 3/2 + (\frac{1}{4} - \frac{1}{4\sqrt{7}})e^{-\frac{1}{2}(1 - \frac{1}{2}\sqrt{7})} + (\frac{1}{4} + \frac{1}{4\sqrt{7}})e^{-\frac{1}{2}(1 + \frac{1}{4}\sqrt{7})} +$ $y(0) = \frac{3}{2} + \frac{1}{4} - j\frac{5}{4\pi} + \frac{1}{4} + j\frac{5}{4\pi} = 2$ $\begin{array}{rcl} \frac{dy}{dt} & = & \left(\frac{1}{4} - \frac{15}{4} + \frac{1}{17}\right) \left(-\frac{1}{2} + \frac{1}{4} + \frac{15}{4} - \frac{1}{4} + \$ © Pearson Education Limited, 2015.

PROBLEM
\n $\text{PROBLEM: } 3, 27$ \n
\n (a) characteristic equation is $s^2 - 2.5s + 1 = (s - 2)(s - 0.5) = 0$; roots are $s = 2, 0.5$; \n modes are $e^{2t}, e^{0.5t}$.\n
\n (b) characteristic equation $s^2 + 9 = (s - 3j)(s + 3j) = 0$, roots $s = 3j, -3j$; \n modes e^{3jt}, e^{-3jt} . Justable since real part of roots is 0 (roots lie on imaginary axis).\n
\n (c) Characteristic equation:\n $s^2 + 9 = (s - 3j)(s + 3j) = 0$, roots $s = 3j, -3j$; \n modes e^{3jt}, e^{-3jt} . Justable since real part of roots is 0 (roots lie on imaginary axis).\n
\n (d) Characteristic equation:\n $S^2 + 3.5S - 2 = 0$ \n
\n (e) Characteristic equation:\n $S^2 + 5.5S^2 + 4.5 + 3 = 0$ \n
\n (f) Characteristic equation:\n $S^3 + 5.5^2 + 4.5 + 3 = 0$ \n
\n (g) Characteristic equation:\n $S^3 + 5.5^2 + 4.5 + 3 = 0$ \n
\n (h) Characteristic equation:\n $S^3 + 2.5^2 + 4.5 + 8 = 0$ \n
\n (i) Characteristic equation:\n $S^3 + 2.5^2 + 4.5 + 8 = 0$ \n
\n (j) Characteristic equation:\n $S^3 + 2.5^2 + 4.5 + 8 = 0$ \n
\n (k) Characteristic equation:\n $S^3 + 2.5^2 + 4.5 + 8 = 0$ \n

 \mathbf{I}

 $PROBL5M13.28$

(a) Stable, All characteristic roots have negative Yeal parts

(b) Characteristic equation: $S^2 + 1.5S - 1 = D$ $roots$; $s = -2$ $s = +0.5$

unstable, I root is positive and real.

(C) characteristic equation: 5²+25 = 0
roots: 5=0, 5=-2

unstable: one root has non-negative real part.

(d) Characteristic equation: $5^3+25^2+85+32=0$ roots: -2.9559, 0.4780+j3.2553, 0.4780-j3.2553 unstable: 2 root have positive real parts.

(e) characteristic equation: $5^{3}+25^{2}+85+16=0$ $Yoots: -2, 12.8284 - 12.8284$

unstable, a root have non-negative real parts

(A) characteristic equation: s^2 +2 s^2 +85+8 $yoots: -2, 12, -12$

unstable. 2 roots have non-negative real parts

PROBLEM 3.29 (a) (i) From Solution to Problem 3-25, 5 = 3. 10^{3} Mode 15 e^{-3t} (ili) mode is e^{-3t} $(L22)$ $S = -10$, mode is e^{-10t} (iu) $S_1 = 1, S_2 = 5$. Mode are $e^{\frac{-t}{2}}e^{-5t}$ (4) 5=10, mode is e^{19} (b) $e^{at} = e^{t/\tau} \Rightarrow \tau = \frac{1}{a} = t$ ime constant (u) $e^{-3t} = e^{-t/\tau} \Rightarrow \tau = 13(4)$.

(i) $e^{-3t} = e^{-t/\tau} \Rightarrow \tau = 13(4)$.

(i) $e^{-5t} = e^{-t/\tau} \Rightarrow \tau = 1/10(4)$

(i) $e^{-5t} = e^{-t/\tau} \Rightarrow \tau = 1/4$.
 $e^{-t} = e^{-t/\tau} \Rightarrow \tau = 1/4$.

(U) $e^{t/9/\tau} = e^{-t/\tau} \Rightarrow \tau = -7/4$. (c) The natural response of a stable system receches steady-state in approximately four time constants $T_S \simeq 4\tau$ (i) $r = 1/3(i)$ \Rightarrow $T_5 \approx 4/3(i)$ (i) $T_5 = 4/3(4)$ (iii) $x = \frac{1}{10}(x) \Rightarrow T_5 = \frac{4}{10}x$ $(i|y)$ $\zeta_1 = (i\lambda_1)$, $\zeta_2 = \frac{1}{5}(4)$, $\zeta_5 = 4\zeta_1 = 4.2$ (U) the system unstable -it will not reach steady-state. (d) Char, egn: $5^{2}+9=0$ => $5_{1} = 13, 5_{2} = -13$ modes : esst, essE the Yeal part of each root is zero, therefore the time constant is undefined. The natural rèspanse is oscillatory. © Pearson Education Limited, 2015.

7 **Problem** 3.30 (Continued)
\n(d)
$$
y(0) = \frac{100}{10!} + 0.995(0) \sin(327.16^{\circ}) \approx 0
$$

\n
$$
\frac{d(44^{\circ})}{dt^{2}} = -\frac{100}{10!} + 0.995(0) \sin(327.16^{\circ}) \approx 0
$$
\n
$$
\frac{d(44^{\circ})}{dt^{2}} = -\frac{100}{10!} + 0.995(0) \sin(327.16^{\circ}) \approx 0
$$
\n
$$
\frac{d(3)}{dt^{2}} \times (4) = 3 u(4) = 3e^{04} \Rightarrow 5 = 0
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) = (3)(3.5) = 7.5
$$
\n
$$
\frac{d}{dt} dt = 3.5
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) = (3)(3.5) = 7.5
$$
\n
$$
\frac{d}{dt} dt = (0.5)(5) = 1.5
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) = 1.25
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) + 5 = 1.25
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) + 5 = 1.25
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) + 5 = 1.25
$$
\n
$$
\frac{d}{dt} dt = 1 + 0.2(4) + 0 = 0.25(3e^{46}) = 34 e^{46}
$$
\n
$$
\frac{d}{dt} dt = 1 - 0.25(3e^{46}) = 34 e^{46}
$$
\n
$$
\frac{d}{dt} dt = 1 - 0.25(3e^{46} - 1.25) = 1.25
$$
\n
$$
\frac{d}{dt} dt = 1 - 0.25(3e^{46} - 1.25) = 0.25e^{46}
$$
\n
$$
\frac{d}{dt} dt = 1 - 0.25(3e^{46} - 1.25) = 0.25e^{46
$$

Problem 3.31 (Comtruced)
(d) $X(t) = 3e^{4t} \Rightarrow 5 = 4$: solution is the same as given few (c).
(e) $X(t) = 3$ and $4t = 3$ do $(4t - 70^{\circ})$
(f) $H(f) = \frac{1}{2} \times 5 = \frac{14}{4} = 3$ do $(4t - 70^{\circ})$
(g) $W(f) = \frac{1}{2} \times 5 = 3$ (or $(4t - 90^{\circ})$)
(h) $H(f) = 5.30 \times 0.4(4t - 90^{\circ})$
(i) $H(f) = 5.30 \times 0.4(4t - 90^{\circ})$
(j) $(t) = 5.003$ and $(4t - 90^{\circ})$
(k) $H(f) = 2.83 \times 0.4(4t - 90^{\circ})$
(l) $X(t)$ of (e) is that of (f) delayed by 90°.
(e) $X(t)$ of (f) is that of (g) delayed by 90°.
(f) $X(t)$ of (g) is that of (h) delayed by 90°.
(g) X) X and X is $5^2 + 45 + 10 \Rightarrow 5 = -4$
(h) X and X is $5^2 + 15 + 10 \Rightarrow 7 = \frac{1}{4}(2)$
(i) X and X is $5^2 + 15 + 10 \Rightarrow 7 = -1$
(ii) $\frac{1}{2} \times 7 = 1$ (iii) $\frac{1}{2} \times 7 = 1$

PROBLEM 3.32 $V(t) = 2 Cost 4t$ \Rightarrow $S = 14$ (a) $H(14) = \frac{14}{14+a}$, $H(14)X(t) = 5 cos(4t-45^{\circ})$ $\Rightarrow H(y4) = \frac{5}{2} \left(-45^{\circ} - \frac{1}{\sqrt{4^{2}+a^{2}}} \right) - \frac{1}{4} \left(\frac{4}{a} \right)$ $\frac{k}{\sqrt{4^{2}+4^{4}}}=\frac{5}{2}$ and $a=4$. $K = (\sqrt{4^2+4^2})(\frac{5}{2}) = 14.142$ (b) >> $n = [0 14.142], d = [1 4];$
>> $h = polyual(n, 4 * j) / polyval(d, 4 * j)$ $>$ $>$ $\frac{3}{9}$ phase = angle (h) \star 180/pi (C) $X(t) = 2$ $cos 3t \implies S = 43$ $H(13) = \frac{16}{3}$
 $H(33) = \frac{16}{3}$
 $H(33)$ x(t) = 2.222 Cos(3t-56.31⁰) => $H(14) = 2.222 / -56.31^{\circ} = \frac{K}{13^{2}+a^{21}} / \frac{t}{a}$ $\frac{1}{\sqrt{2}}\left(\frac{3}{\sqrt{2}}\right)=56.31^{\circ} \Rightarrow \alpha=\frac{3}{\tan(56.31^{\circ})}=2$ $\frac{K}{\sqrt{3^{2}+2^{21}}}$ = 1.111 => K = 1.111 \13 = 4 $H(s) = \frac{4}{5+2}$

PROBLEM 3.36 (a) From solution to Problem 3.12(a): $h(t) = h_1(t) * h_2(t) - h_1(t) * h_3(t) * h_4(t) + h_4(t) * h_5(t)$ $y(t)=h(t) * x(t) = y_{ss}(t) = |f|(s) x(t)$ $H(s) = H_1(s)H_2(s) + H_1(s)H_3(s)H_4(s) + H_4(s)H_5(s)$ (b) From the solution to Problem 3.13 (a): $h(t) = h_1(t) * h_2(t) + h_1(t) * h_3(t) * h_4(t) + h_1(t) * h_3(t) * h_5(t)$ $4(f) = h(f) \times k(f) = 9s$ ss(t) = H(s) $k(f)$ $H(s) = H(s)H_2(s) + H_1(s)H_3(s)H_4(s) + H_1(s)H_3(s)H_5(s)$ (C) From the solution to Problem 3.26: $-\phi_{t}(t) = h_{1}(t) \times \chi(t) - h_{1}(t) \times h_{2}(t)$ y(t) $let(m(t)) = h_2(t) * y(t)$ than $y(t) = h_1(t) * [x(t) + m(t)]$ $4956(t) = H_1(s) |X(t) + W(t)|$ $m_{55}(t) = H_2(s) H_{5}(t)$ \Rightarrow 4ss(t) = H1(s)X(t) + H1(s)H2(s) yss(t) $1 + 4(s)H_2(s)$ yss(t) = H₁(s) X(t) $Y_{ss}(t) = \frac{H_{l}(s)}{1 + H_{l}(s)H_{2}(s)}$ $X(t) = H(s)X(t)$ $H(s) = \frac{H_1(s)}{1 + H_1(s)H_2(s)}$

27.60 B. L. (a) 3.37
\n(a)
$$
x(t) = \frac{1}{2} \int_{0}^{2} \frac{h_{12}}{h_{13}} \frac{d_{14}e^{u_{13}}}{h_{13}} dx
$$

\n $z(t) = h_1(t) + x(2\sqrt{2})$
\n $h_2(t) = h_2(t) + x(2\sqrt{2})$
\n $h_1(t) = h_2(t) + x(2\sqrt{2})$
\n $h_2(t) = h_2(t) + x(2\sqrt{2}) - h_2(t) + x(2\sqrt{2}) + h_2(t) + h_2(t) + h_2(t)$
\n $= h_2(t) + x(2\sqrt{2}) - h_2(t) + h_2(t) + x(2\sqrt{2})$
\n $= h_3(t) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2})$
\n $= h_3(t) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2})$
\n $= h_3(t) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2}) + x(2\sqrt{2})$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s)) \propto (x) = H_3(s) \times (x) + H_2(s) + x(2\sqrt{2})$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s)) \propto (x) = H(s) \times (x) + x(2\sqrt{2})$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s))$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s))$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s))$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s))$
\n $u_3 = (x) = H_3(s) (H_1(s) + H_2(s))$
\n<

Poselem 3.37 (contributed)
\n(a)
$$
x(t) = \frac{1}{2} \sqrt{h_2} \sqrt{\frac{a(t)}{h_1} + \frac{a(t)}{h_2} \sqrt{m(t)} \sqrt{h_1}} = \frac{1}{2} \sqrt{1 + \frac{1}{
$$