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Discrete~Time Signals
and Systems
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B A discrete-time signal

- 1s defined only at discrete mnstants of time.

B We denote a discrete-time signal as x|n|,

- where the independent variable 77 may assume only integer values.

B A discrete-ime system

- 1s dehined as one 1n which all signals are discrete-time.

B Discrete-ime Signal Processing (DSP)

B Sampling

- Continuous-time functions — Discrete-times samples
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B [f the signal 1s sampled at regular increments of time T, the
number sequence f (nT),n =---,—2,—1,0,1,2, ..., results.

T : the sampling period.

Timing signal
from computer

|

f(0) Analog-to-digital f(n1)

Amplitude 4
1) f(nT)

--JT:i‘-,r ,4'/’ '}«*:"1;257 _

2T -TS~4-" T 2T 3T

—
converter Data to 0
computer (a)
(b)
A/D Computer
f@ fln — )
—> Sampler _!..,, Digital 8ln]
f(nT)" | processor !

(c)

Figure 9.1 Hardware diagram for sampling

and processing.
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Notations

B f(t) : a continuous-time signal
B f(nT) :the value of f(t) att = nT

B f|n]:a discrete-time signal that is defined only for » an integer
B Parentheses () : continuous time

B Brackets [ ] : discrete time.
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Continuous-amplitude signal
& Discrete-amplitude signal

fan) =f©| _
flm=f@|__#5®|_

A discrete-time signal can be a amplitude-continuous

signal

Discrete-amplitude signal: x[n] can be defined only

certain defined amplitude

— Digital signal
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Reasons that engineers are interested 1n discrete-time
signals (Why Digital format?)

B Sampling 1s required if we are to use digital signal processing (DSP)

B Many communication systems are based on the transmission of discrete-ime

signals
B Sampling a signal allows us to store the signal in discrete memory.

B Automatically controlling physical systems require digital-computer

implementation.

B Consumer products such as CDs, DVDs, digital cameras, and MP3 players use
digital signals.
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Sec. 9.1 Discrete-Time Signals and Systems

B numerical integration as an example

A

x (1)

__

2 )

>

0

(n

- )H

nH

(n+1)H

Figure 9.2 Euler integration.
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A Difference Equation

t
y(t) =f0x(r)dr

nH

@), =y = | x@adr

(n—-1)H
= f x(7)dt
0
~y((n— 1DH) + Hx((n — DH)
Ignore =

y(nH) = y((n — 1)H) + Hx((n — 1)H)

= yln] = y|ln — 1] + Hx|n — 1]
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Example 9.1
Ditference-Equation solution

B Consider the numerical integration of a unit step function
u(t) using Eluer’s rule.

B Assume initial condition y(0) = 0.

x(nH) =1forn >0 yln] = y|n — 1] + Hx|n — 1]
- x[n]=1forn=>0

y[1] = y[0] + Hx[0] =0+ H
y|2] = y[1] + Hx[1]=H+H
______________________________________________ y[3] =y[2] + Hx[2] =2H + H

The exact integral of . o _
- the unit step function y[n] = y[n — 1] + Hx|[n — 1]
’ i =(n—1)H+H=nH

t
y(t) = j u(t)dt=t,t>0
y[n] = nOH = y(0)| Euler's rule gives the exact value for the

t=nH integral of the unit step function 9/46



Unit Step Functions

B Discrete-time unit step B Time-shifted version
function

1, n>0 B 11, n=ng
uln] = {0, <0 uln —ne| = {0, n < ng
uln] A uln — nol A
1+ ° ® ® 1 ® ® 9
——o > — o 8 — o —
-2 -1 0 1 2 3 n -1 0 1 ng—1 ny nyp+1 n

Figure 9.3 Discrete-time unit step functions.



Unit Impulse Functions

B Discrete-time unit B Time-shifted version
Impulse function
_ 1, n=n
1, =0 _ ) 0
oln] = {0, Z;t 0 O[n —noe] = {O, n#ng
&[n]
= u[n] —u[n —1]
8[n] A 8[n — ngl A
a’ !
—@ o— & & > @ —0 — & . 4 o— r o
-2 -1 0 1 2 n -1 0 1 ng—1 ng np+1 n

Figure 9.4 Discrete-time unit impulse functions.
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Equivalent Operation

B integration in continuous time summation in discrete time

By Euler's rule
t

j x(t)dt i T

A — —3H —2H -H

j_t x(1)dT © 2 B

k=—c0

B the first difference

x[n] 1

0 H 2H 3H nH

Figure 9.5 Summation yielding
approximate integration.

Approximation
dx(t) x[k] = x[k — 1] x[n] A for derivative
L P H ///
da;(tt) & x[n] —x[n —1] »T ;
0 k=1 k >

Figure 9.6 Approximate differentiation.
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Equivalent Operation

TABLE 9.1 Equivalent Operations

Continuous Time

Discrete Time

- [ o

dx(t)
dt
3. x(t)6(t) = x(0)o(¢)
du(t)
4. 6(t) = o

5. u(t) = [ OOS(T)d'T

x[n] — x[n — 1]
x[n]é[n] = x[0]3]n]
é[n] = u[n] — u[n — 1]

n

uln] = 2, 8[k]

k=—00
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Time transformations

Time Reversal x[m] A
™ 3¢ ? ?
y[n] = x[m)]| ‘
m=_n [ ] 1
= x[-7] . I -
-4 -3 -2 -1 0 1 2 3 m
N Y A TN (NN NN B R
4 3 2 1 0 -1 -2 -3 n=-m
yln] =x[—n]I
® ¢ 3 ®

(U8
-~ 0
S y



Time scaling

, Down sampling
] ]1

R IR I8

yi[n] = x[2n] |}

2y, [n]—z[2n]

<
~—
=
d
Il
=,
=
~
W
e

Figure 9.8 Signals illustrating time scaling. 15/46



Time scaling

Down sampling

Digitized
TV picture TV picture
- @ o o ®: . o Reduced

| TV picture

Z OO —
— N

Lines / Pels

Figure 9.9 Television picture within a picture.
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Time Shifting y[n] = x[n —no]

m=n-—2
yﬂﬂl?{%@iii%fgx
m
¢ 3 t 9 9 x[n] 1
2¢ ? 3 ¢ ?
eee 1 I eee 2
@ > 1
2 -1 0 1 2 3 4 5 p °*°° I .
(b) —* -4
object -4 -3 -2 -1 0 1 2 3
| | | | | | | | -
yaln] :> -2 -1 0 1 2 3 4 S5@=m+2
[ ] e 3 ] | | i ! | | | | —
, e Ry R S = m—1
l ()
[ N ] 1 I [ X ]
@ —@ >
-5 -4 -3 -2 -1 0 1 2 n Figure 9.10 Time-shifted signals.
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General Form  y[n] = x[an + b]

x[m]ﬂ
Ex. 9-2
y[n] = x[2 —n] 2 |-
>n=2—m
.
& & L S
-2 -1 0 1 2 3 m
I | | | | 1
4 3 2 1 0 —1@
(a) axis
x[2 — n] 4
2 ‘
1
& @ I & — 3
-1 0 1 2 3 4 n
(b) axis
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Amplitude transformation y[n] = Ax[n] + B

x[n] 4 y[n] 4
EX 93 2 > -1
y[n] = 3 - 2x[n] I N ] 1}
-1 ¢ 3

® — e 3
xn] y[n] N o
2— -1
1— 1 ylm] ¢
O N 3 ¢ 3 ® %
L
19
Ex. 9.4 2o s m




yln] 4
9 3 ?
L I N ] 2 | ®
1 I

[ -

-1 0 1 2 l

(c)
Figure 9.12 Signals for Examples 9.3

and 9.4.
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Transformation of signals

TABLE 9.4 Transformations of Signals

Name yir]
Time reversal x[—n]
Time scaling x[an]
Time shifting x[n — ngl
Amplitude reversal —x[n]
Amplitude scaling | Al x[n]

Amplitude shifting x[n] + B
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9.3 Characteristics of discrete-time signals

Even and Odd Signals
even Xe[n| = x.[—n] xo[n] = L x[n] + x[—n]
odd x,[n]| = —x,|—n] % _
x[n] = x.[n] + x,[n] Xoln] =7 lx[n] —x[-n]

The average value, or mean value, of a discrete-time signal

A, = lim

N
N—>oo 2 Z
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Properties of Even and odd signals

B The sum of two even signals is even.

The sum of two odd signals is odd.

B The sum of an even signal and an odd signal
is neither even nor odd.

B The product of two even signals is even.

The product of two odd signals is even.

B The product of an even signal and an odd signal is odd.

o L ®
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Ex. 9.5 Even and Odd Functions

x[n] 4

ol

€ S & . &>
-5 -4 -3 -2 -1 0 3 4 5 »n
(2) ~_,
. > xfn)
3¢
259
e 2
1.5 1.5
o @ @ B
-5 -4 -3 -2 -1 0 3 4 5 n

(b)
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Ex. 9.5 Even and Odd Functions

Xo[n] + xo[—n] = xo[n] = x0[n] =0

A P
%[l BAc% 0
2_
1.5¢
1_
—2 -1 I 1 3

® ® 0 4 e e

—5—4—3110 1 2 i 5
_1_

¢-15

_2.___.
(c)

Figure 9.13 Signals for Example 9.5.
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Signal Periodic in

B A discrete-time signal is periodic with period = N
x[n + N] = x[n]
B Consider x[n] is obtained by sampling a sinusoidal
signal x(t) = cos(nwyt) every T sec.

x[n] = cos(nwyT)
= x[n + N] = cos[(n + N)w,T]
= cos(nwoT + Na)OT)

Hence, Nw,T = N — T = an where k is any integer
= — :@: NT = kTO , N samples in k periods of the signal

N 26/46
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Ex. 9.6 Sampling of a sinusoid
x(t) = sin(nt) > Ty = 2s

1) T \ AHAAARS
T =055 = 4T = To *- 11,2 pe

I

To 4 4 T = 0.75s = 8T = 3T,
(a) 0
’f - #7 r \‘ Pl ‘Fﬁﬁ
! 1 ! “ : L) ;' \ 315/\HH28/\“£
,'* \ !r' \ ';' ‘I‘ N !
’ L _,
1 () ‘1. l' 2 _*l ;' 4 1Il|. ,tj 1 I(S)
I \ I i F i i i
N v/ \ ' ' \ .
o R . SUEEAEAZS
(b) T =255,Ty = 25 = 4T = 5T,
.r"\ AN I AN \ AN
K ‘\‘ g “‘ , Re “‘ g . , S “‘ ;: \
. Ry . ’ \ i . K . . % R
\‘ r; “ "l' ‘-‘ f‘l \.‘ ’ \ ’l‘ \‘ 7
‘\' 7 vy o N, -‘- .
0 2 4 6 8 10 ((s)

Figure 9.14 Periodic signals for Example 9.6. 7/46



Sampling of complex exponential signal

- wonT
= /" = x[n]
t=nT

ejwot

e/nwoT = x[n] = x[n + N]

eINwoT — 1 = pJ2Tk
NwoT = 2k = NT = kT,
kT

N T
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B The discrete-time exponential signal that is not necessarily
obtained by sampling a continuous-time signal.

x[n] — ejnwOT — ej-QOn = 1L(Q0n) 'Q‘O — a)OT
IR A
x[n] = /%™ = x[n + N]
— o/ (Qon+QoN)
— ejQOnej27tk

.Q.()N = 21tk zﬂo =
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Real frequency wy EWEEFiEE

Normalized discrete frequency Oy = woT

Examples: I
QO — N 2T

k
Qo =2,5="€Q — not periodic

x[n] = cos(0.1mn)

k1
o =0.1m, = =-5€Q — periodic
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(BEZEEREIREE - BZEERX)
N samples/ periodic

21k :
N=-—-—, k is the smallest integer
0

Ex: x[n] = cos(0.1mn)

N = S0k k =1
S 01m T

= N = 20 samples/period
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N samples/periodic
21k

o k is the smallest integer
0

N =

Ex: x[n] = cos(5mn)
21k
N=——=04k,k=5
51

>N =2
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The discrete-time sinusoid cos(Qyn)

1. cos(Qyn) is periodic in n only if,

Q, k

2m N
2. cos(Qgn) is periodic in Q with periodic 2

cos(Qgn) = cos(Qy + 2mk) n
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9.4 COMMON DISCRETE-TIME SIGNALS

B Some equivalent discrete-time signals are introduced
B These signals can appear in the transient response of
certain discrete-time systems.

Digital-
to-analog PO\’YG{I
converter amplifier
x[n] x,(t)
—> D/A > K
From
computer Speaker
(a)
x[n] A %) A
T° T

Figure 9.16 Computer generation of a tone. 34/46



COMMON DISCRETE-TIME SIGNALS

Ideal time
delay
OB g IR
Ideal time
delay axin — 1] x[n] = ax[n — 1]
x[n] g5 x[n — 1>] a <
Multiplication Suppose X[ 0] —1
(a) (b)

Figure 9.17 Discrete-time system.

x|1] = ax[0] =a
x[2] = ax[1] = a*

xn] =axn—1] =a
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I IR RS It

n

-

e eI > g~

e Letting a = e?,b = In(a)
x[n] = a® = (e?)" = eb"
x[n] = Ca™ |

TC*TTT‘T-

0<ax<l1

D

Y
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Investigate the characteristics of the discrete-

time signal x[n] =a" x[n] = Ca” 4
Let a=e? TTC* -
n TP~ -
x[n] = a™ = (e?) =P TTTT N
0<a<l "

ex. x[n]=0.9"
09=e?=bh=1n0.9=-0.105
X[Tl] — Ogn — e—O.lOSn

Suppose we sample an exponential signal every T seconds

_ _ , )
x(t) = e " = (e7?T)" = (a)", time constant T = =

o
> = x[n] = (e_T/T)n =aq"
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The number of samples per time constant t /T

: : -T
We can assign a time constant 7 = T a

to the discrete exponential signal a™

Ex. 9.7 For the signal x[n = (0.8)" W C“’;“
4‘ ~ P
L Tl 4485 = 4487 n ITrr.
T ln O . 8 0<a<l1 "
4.48 samples/time constant. Assume nT > 47, amplitude can
nT > 47 ~ 18T = n > 18 be neglected.

. N 38/46
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9.5 COMMON DISCRETE-TIME SIGNALS

B System

A process for which cause-and-effect relations exist
Ex: the Euler integrator y[n] = y[n — 1] + Hx[n — 1]

x[n] yin]
—> System [——> Figure 9.22 Block diagram for a discrete-
Input Output

time system.

Example: A low-pass digital filter
the filter removes the higher frequencies in a signal, while
passing the lower frequencies.

y[n] = T(x[n])
=1 -a)y[n-1] (an o-filter, 0<o<1)

Choices of oo and the sample period 1" determine the range

of frequencies that the filter will pass. 39/46



Interconnecting Systems

| |
: —3- :
| 1 :
x[n] | | yln]
| I
| I
: Sys;em :
| yaln] !

——— v ————— - — ees S - —— waes wm S e w—

= T(x[n])

— o m—— — — — — — — — — — — — — — — t— — — — —

y[n] = y;[n] + y,[n]
= Ty[n] + T;[n]

= T(x[n])

Figure 9.23 Parallel connection of systems.

Figure 9.24 Series, or cascade, connection
of systems.
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9.6 PROPERTIES OF DISCRETE-TIME SYSTEMS

B Systems with Memory

A system has memory if its output at time n,,
y[no], depends on input values other than x|n,|

Ex: A simple memoryless discrete-time system
y[n] = 5x[n]
(a static system )
Ex: An example of a system with memory
y[n] = y[n — 1] + Hx[n — 1]
(a dynamic system )
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B Invertibility

Distinct inputs results in distinct outputs

Ex: y[n] = |x[n]|

=> not invertible

Inverse of a System

x[n] System Svstem y[n] = x[n]

T'(e)

Figure 9.27 Identity system.
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B Causality
Causal Systems

A system is causal if the output at any time is dependent
on the input only at the present time and in the past.

All physical systems are causal, whether continuous or discrete

1
y[nl = 3lx[n = 1]+ x[n]+ x[n + 1]] noncausal
DT o i e N Unit |
: delay delay advance |
x[n] | x [ =i1] x[n= 2] [ l]

Figure 9.28 Realizable system with a unit 43/46
advance.



B Stability

BIBO Stability :
the output remains bounded for any bounded input

|x[n]| < M for all n.
= |y[n]| < R for all n.

Ex: the Euler integrator

y|n] = yn—l + Hx|n — 1]

yln] = H Z

k=—co0

is not stable when x[k] = constant
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B Time Invariance

if a time shift in the input results only in the same time
shift in the output.

x[n] yln]
—> System
(a)
x[n] Delay xln - HOL
L0
(b)

yn]

= y[n]

x[n —ne| - y[n|
y[n —nel = yaln

n—ng

Delay | YIn —no]
N
yaln]
System F——>
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B Linearity

a;xq[n] + axxz[n] = a;y4[n] + ayy,[n]

(superposition)

Ex1: Linear system

y[n] = Kx[n]

Ex2: Nonlinear system

y[n] = x?[n]

Prove it by yourself!
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Ex. 9.10 Illustrations of discrete-system properties

_n+ 2.5 2
yin] = [n+1.5] T
1. Memoryless
2. Invertible n + 1.51%
A= [n+2.5] yin
3. Causal

the output does not depend on the input at a future time

4. stable

ly[n]| <9M, forx[n] <M Prove it by yourself!

5. Not time-invariant

yll|  #y[n]

n—-ng x[n—ngp]

6. Linear N4 25

n+ 1.5
= a;y1[n] + a;y,[n]

a;x1[n] + azx;[n] - [ ] a,y1[n] + azy;[n]
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- The End of Chapter 9 -



