CHAPTER III

Figure 3.1b

(c) Since $F(x)$ is non-decreasing and $F(+\infty)=1$, we have

$$
F(+\infty) = \sum_{j=1}^{\infty} 1/a^j = \frac{1}{a-1} = 1 \text{ or } a = 2
$$

Figure 3.1c

AND $p(x) = 1/2$, $x = 1, 2, \ldots$ $F(x)$ $P(x)$ $\frac{7}{8}$
 $\frac{3}{4}$ $1/2$ 1/2 $^{1/4}$ ٥ 2 3 5 О z 4 $\boldsymbol{\chi}$ I 2 3

SOLUTIONS MANUAL 9

(d) Since $F(x)$ is non-decreasing and $F(+\infty)=1$, we have $a > 0$. And

$$
f(x) = dF(x)/dx = ae^{-ax}, \quad x > 0
$$

= 0, elsewhere

Figure 3.1d

(e) Since $F(x)$ is non-decreasing and $F(x) \leq 1$, we have $a \geq 0$. For $a > 0$,

$$
f(x) = \frac{dF(x)}{dx} = ax^{a-1}, \quad 0 \le x \le 1
$$

$$
= 0, \qquad \text{elsewhere}
$$

Figure 3.1e.1

For $a=0$

 $p(x)=1$, $x = 0$ $= 0$, elsewhere

Figure 3.1e.2

(f) Assuming that X does not have a mixed distribution, we have $a \sin^{-1} \sqrt{1} = 1$ or $a = 2/\pi$

$$
f(x) = \frac{dF(x)}{dx} = \frac{1}{\pi\sqrt{x(1-x)}} , 0 \le x \le 1
$$

$$
= 0 ,
$$
 elsewhere

(g) Since $F(+\infty)=1$, we have $a + 1/2=1$ or $a = 1/2$. X has a mixed-type distribution, neither pmf nor pdf exists.

3.2 (a)
$$
P(x \le 6) = F(6) = 1
$$

\n $P(1/2 < x \le 7) = F(7) - F(1/2) = 1 - 0 = 1$

(b)
$$
P(x \le 6) = F(6) = 1/3
$$

 $P(1/2 < x \le 7) = F(7) - F(1/2) = 1 - 0 = 1$

(c)
$$
P(x \le 6) = F(6) = \sum_{j=1}^{6} 1/2^j = 63/64
$$

 $P(1/2 < x \le 7) = F(7) - F(1/2) = \sum_{j=1}^{7} 1/2^j - 0 = 127/128$

(d) $P(x < 6) = F(6) = 1 - e^{-6a}$ $P(1/2 \leq x \leq t) = P(t) - P(1/2) = (1 - e^{-t}) - (1 - e^{-t}) = e^{-t} - e^{-t}$, $a > 0$ \overline{a} \overline{R}

(e)
$$
P(x \le 6) = F(6) = 1
$$

\n $P(1/2 < x \le 7) = F(7) - F(1/2) = 1 - (1/2)^a$, $a > 0$

(f)
$$
P(x \le 6) = F(6) = 1
$$

\n $P(1/2 < x \le 7) = F(7) - F(1/2) = 1 - \frac{2}{\pi} \sin^{-1} \frac{1}{\sqrt{2}} = 1 - \frac{2}{\pi} (\frac{\pi}{4}) = \frac{1}{2}$

(g)
$$
P(x \le 6) = F(6) = \frac{1}{2}(1 - e^{-1/6} + 1) = \frac{1}{2}(2 - e^{-1/6})
$$

 $P(1/2 < x \le 7) = F(7) - F(1/2) = \frac{1}{2}(2 - e^{-7/2} - 2 + e^{-1/4}) = \frac{1}{2}(e^{-1/4} - e^{-7/2})$

$$
3.3~(\mathrm{a})
$$

Figure 3.3a

Figure 3.3b

4

x

3.4
$$
F_X(x) = \int_{-\infty}^x f_X(u) du
$$

\n(a) $F_X(x) = 0$, $x < 90$
\n $= 0.1x - 9$, $90 \le x < 100$
\n $= 1$, $x \ge 100$
\n(b) $F_X(x) = 0$, $x < 0$
\n $= 2x - x^2$, $0 \le x \le 1$
\n $= 1$, $x > 1$
\n(c) $F_X(x) = \frac{1}{\pi} \tan^{-1} x + \frac{1}{2}$, $-\infty < x < \infty$

3.5 (a)
$$
a = \frac{1}{3}
$$

(b)

Figure 3.5b

(c)
$$
P(X \ge 2) = (\frac{1}{9})(1)(\frac{1}{2}) = \frac{1}{18}
$$

(d) $P(X \ge 2 | X \ge 1) = \frac{P(X \ge 2 \cap X \ge 1)}{P(X \ge 1)}$
 $= \frac{P(X \ge 2)}{P(X \ge 1)} = \frac{1/18}{(2/9)(2)(1/2)} = \frac{1}{4}$

$$
3.6 \ \ P(X \ge 150) = \int_{150}^{\infty} \frac{100}{x^2} dx = \frac{100}{150} = \frac{2}{3}
$$

Figure 3.7b

(c)
$$
P(T \ge 15) = \int_{15}^{\infty} f_T(t)dt
$$

\n
$$
= \int_{15}^{30} \left(\frac{1}{15} - \frac{t}{450}\right) dt = \frac{1}{30}(15) \left(\frac{1}{2}\right) = \frac{1}{4}
$$
\n(d) $P(T \ge 15) = 1 - P(T \le 15)$

$$
= 1 - F_T(15) = 1 - \left[\frac{15}{15} - \frac{15^2}{900}\right] = \frac{1}{4}
$$
\n
$$
(e) \quad P(15 < T \le 16 | T \ge 15) = \frac{P(15 < T \le 16 \cap T \ge 15)}{P(T > 15)}
$$

$$
= \frac{P(15 < T \le 16)}{P(T \ge 15)} = \int_{15}^{16} f_T(t)dt/(1/4)
$$

= 0.322

3.8 Let X be the time of arrival in minutes. Then Prob: desired = Shaded area/Total area $=\frac{1}{\sqrt{25}}\left(\frac{1}{\sqrt{25}}\right)^{1/5}$ $T = T$. The length $T = T$ $= 2/5 = 0.4$

SOLUTIONS MANUAL 13

3.9 Consider only half of the bridge as shown in Figure. Then

 $F_X(x) = P(X \le x) = 0$, $x < 0$ $x=b$, $0 \le x \le b$ $= 1$, $x > b$

and

$$
f_X(x) = \frac{dF_X(x)}{dx} = 1/b , \quad 0 \le x \le b
$$

$$
= 0, \qquad \text{elsewhere}
$$

3.10 Consider only half the line segment AB and let Y be the distance from the midpoint of AB to the fire as shown in Figure. Then

$$
F_X(x) = P(X \le x) = P(\sqrt{d^2 + Y^2} \le x)
$$

$$
= P(Y \le \sqrt{x^2 - d^2})
$$

$$
= F_Y(\sqrt{x^2 - d^2})
$$

The r.v. Y is uniformly distributed over $(0, b/2)$ or

$$
F_Y(y) = 0, \t y < 0
$$

= 2y/b, 0 \le y \le b/2
= 1, \t y > b/2

Then

$$
F_X(x) = 0,
$$

\n
$$
= \frac{2}{b}\sqrt{x^2 - d^2}, \quad d \le x \le a
$$

\n
$$
= 1,
$$

\n
$$
x > a
$$

and

$$
f_X(x) = \frac{dF_X(x)}{dx} = \frac{2x}{b\sqrt{x^2 - d^2}}, \ d \le x \le a
$$

= 0, elsewhere

Figure 3.10.1

Figure 3.10.2

¢

Figure 3.9.1

x

3.11 Let r_0 be the desired radius.

$$
F_R(r_0) = \int_{-\infty}^{r_0} f_R(r) dr = \int_0^{r_0} a e^{-a r} dr
$$

$$
= 1 - e^{-a r_0} = 0.95
$$

$$
r_0 = -\frac{1}{a} \ln 0.05 = 3/a
$$

3.12 Let Y be the r.v. representing the time instant at which the velocity v is applied. Then $f_Y(y)$ has the form

$$
f_Y(y) = 1, \ 0 \le y \le 1
$$

= 0. elsewhere

(a) It is clear that X is restricted to the range $(0, vt)$. Hence,

$$
F_X(x) = 0 , x < 0
$$

= 1 , x > vt

For $0 \leq x \leq vt$, we have

$$
F_X(x) = P(X \le x)
$$

= $P[v(t - Y) \le x] = P(Y > t - \frac{x}{v})$
= $1 - P(Y \le t - \frac{x}{v}) = 1 - F_Y(t - \frac{x}{v})$
Since $F_Y(y) = y$, $0 \le y \le 1$, we have
 $F_X(x) = 1 - t + \frac{x}{v}$, $0 \le x \le vt$
or
 $F_X(x) = 0$, $x < 0$
= $1 - t + \frac{x}{v}$, $0 \le x \le vt$
= 1, $x > vt$

 $\Lambda = v(t - Y)$ or $Y = t - \frac{v}{v}$

(b) At
$$
t = \frac{1}{2}
$$
, $F_X(x) = \frac{1}{2} + \frac{x}{v}$, $0 \le x \le \frac{v}{2}$
 $P(X \ge \frac{v}{3}) = 1 - F_X(\frac{v}{3}) = 1 - (\frac{1}{2} + \frac{1}{3}) = \frac{1}{6}$

3.13 (i) (a)
$$
p_X(1) = p_{XY}(1,1) + p_{XY}(1,2) = 0.5 + 0.1 = 0.6
$$

\n $p_X(2) = p_{XY}(2,1) + p_{XY}(2,2) = 0.4$
\n $p_Y(1) = p_{XY}(1,1) + p_{XY}(2,1) = 0.6$
\n $p_Y(2) = p_{XY}(1,2) + p_{XY}(2,2) = 0.4$
\n(b) $p_{XY}(1,1) = 0.5$
\n $p_X(1)p_Y(1) = (0.6)(0.6) = 0.36$
\nSince $p_{XY}(1,1) \neq p_X(1)p_Y(1)$, they are not independent.

(ii) (a)
$$
f_X(x) = \int_1^2 a(x+y) dy = a(x + \frac{3}{2})
$$
, $0 \le x \le 1$
\n $= 0$, elsewhere
\n $f_Y(y) = \int_0^1 a(x+y) dx = a(y + \frac{1}{2})$, $1 \le y \le 2$
\n $= 0$, elsewhere

(b) Since $f_{XY}(x, y) \neq f_X(x) f_Y(y)$, they are not independent. (iii) (a) $f_X(x) = \int_{-\infty}^{\infty} e^{-(x+y)} = e^{-x}$ $e^{x+iy} = e^{x}$, $x > 0$ elsewhere $f_Y(y) = \int_{-\infty}^{\infty} e^{-(x+y)} = e^{-y}$ $e^{(-y)} = e^{y}$, $y > 0$ \sim 0 \sim (b) Since $f_{XY}(x, y) = f_X(x) f_Y(y)$, they are independent. (iv) (a) $f_X(x) = \int^x 4y(x-y)$ $4y(x - y)e^{-(x + y)}dy = 4e^{x}(x + 2) + (x - 2)$; $x > 0$ $= 0$, elsewhere $f_Y(y) = \int_{0}^{\infty} 4y(x-y)e^{-\frac{1}{2}}$ $4y(x-y)e^{x-y}$ ax = $4ye^{-y}$, $y > 0$ ya kuna a ƙasar ƙasar ƙasar ƙasar ƙasar ƙasar ƙasar ƙasar ƙ elsewhere (b) Since $f_{XY}(x, y) \neq f_X(x) f_Y(y)$, they are not independent. 3.14 (a) $p_X(x) = 0.1 + 0.2 = 0.3, x = 1$ $= 0.3 + 0.4 = 0.7, = 2$ $p_Y(y) = 0.1 + 0.3 = 0.4, y = 1$ $= 0.2 + 0.4 = 0.6, = 2$ (b) $P(X = 1) = p_X(1) = 0.3$ (c) $P(2X \le Y) = p_{XY}(1, 2) = 0.2$ 3.15 Y_1, Y_2 and Y_3 also take values ± 1 . $p_{Y_1}(1) = P(X_1 = -1 \cap X_2 = -1) + P(X_1 = 1 \cap X_2 = 1)$ $= p_{X_1}(-1)p_{X_2}(-1) + p_{X_1}(1)p_{X_2}(1)$ $= 1/4+1/4=1/2$ Similarly. $S = 1$ $p_{Y_1}(-1) = p_{X_1}(-1)p_{X_2}(1) + p_{X_1}(1)p_{X_2}(-1) = 1/2$ $p_{Y_2}(1) = 1/2$, $p_{Y_2}(-1) = 1/2$, $p_{Y_3}(1) = 1/2$, $p_{Y_3}(-1) = 1/2$ **Now** $p_{Y_1Y_2}(1,1) = P(X_1X_2 = 1 \cap X_2X_3 = 1)$ $= P(X_1 = 1 \cap X_2 = 1 \cap X_3 = 1) + P(X_1 = -1 \cap X_2 = -1 \cap X_3 = -1)$ $= p_{X_1}(1)p_{X_2}(1)p_{X_3}(1) + p_{X_1}(-1)p_{X_2}(-1)p_{X_3}(-1)$ $= 1/8 + 1/8 = 1/4$ Hence $p_{Y_1Y_2}(1,1) = p_{Y_1}(1)p_{Y_2}(1)$ Similarly, we can show that $p_{Y_1Y_2}(1,-1) = p_{Y_1}(1)p_{Y_2}(-1)$, $p_{Y_1Y_2}(-1,1) = p_{Y_1}(-1)p_{Y_2}(1)$ $p_{Y_1Y_2}(-1,-1) = p_{Y_1}(-1)p_{Y_2}(-1)$ Hence, Y_1 and Y_2 are independent. Similar procedures show that Y_2 and Y_3 are independent and Y_1 and Y_3 are independent. Consider $p_{Y_1Y_2Y_3}(1,1,1) = P(X_1X_2 = 1 \cap X_1X_3 = 1 \cap X_2X_3 = 1)$ $= P(X_1 = 1 \cap X_2 = 1 \cap X_3 = 1) + P(X_1 = -1 \cap X_2 = -1 \cap X_3 = -1)$ $= p_{X_1}(1)p_{X_2}(1)p_{X_3}(1) + p_{X_1}(-1)p_{X_3}(-1)p_{X_3}(-1)$ $= 1/4$

But $p_{Y_1}(1)p_{Y_2}(1)p_{Y_3}(1) = (1/2)(1/2)(1/2) = 1/8$

Hence, $p_{Y_1Y_2Y_3}(1,1,1) \neq p_{Y_1}(1)p_{Y_2}(1)p_{Y_3}(1)$ and Y_1 , Y_2 and Y_3 are not mutually independent.

3.16
$$
F_{XY}(\infty, \infty) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy
$$

\n
$$
= \int_{1}^{2} \int_{0}^{1} a(x + y) dx dy = \int_{1}^{2} a\left(\frac{x^{2}}{2} + xy\right) \Big|_{0}^{1} dy
$$
\n
$$
= \int_{1}^{2} a\left(\frac{1}{2} + y\right) dy = a\left(\frac{y}{2} + \frac{y^{2}}{2}\right)\Big|_{1}^{2}
$$
\n
$$
= 2a = 1
$$
\nOr $a = 1/2$
\n(a) $P(X \le 0.5 \cap Y > 1.0) = \int_{1}^{2} \int_{0}^{0.5} a(x + y) dx dy = 0.875a = 0.4375$
\n(b) $P(XY < 1/2) = \int_{1}^{2} \int_{0}^{1} \frac{1}{2} a(x + y) dx dy = 9/32$
\n(c) $P(X \le 0.5|Y = 1.5) = F_{XY}(0.5|1.5)$
\n
$$
= \int_{-\infty}^{x} f_{XX}(u|y) du \Big/ f_{Y}(y)
$$
\n
$$
= \left[\int_{0}^{0.5} a(x + y) dx \right]_{0}^{1} a(x + y) dx\Big|_{y=1.5}
$$
\n
$$
= 0.4375
$$
\n(d) $P(X \le 0.5|Y \le 1.5) = P(X \le 0.5 \cap Y \le 1.5)/P(Y \le 1.5)$
\n
$$
= \int_{1}^{1.5} \int_{0}^{0.5} a(x + y) dx dy \Big/ \int_{1}^{1.5} \int_{0}^{1} a(x + y) dx dy
$$
\n
$$
= 0.429
$$
\n3.17 $P(X \le x | X \ge 100) = \frac{P(X \le x \cap X \ge 100)}{P(X \ge 100)} = \frac{P(100 \le X \le x)}{P(X \ge 100)}$
\n
$$
= \frac{F_{X}(x) - F_{X}(100)}{1 - F_{X}(100)}, \quad x \ge 100
$$
\n

3.20 (a)
$$
\int_0^2 \int_0^1 f_{XY}(x, y) dx dy
$$
 gives
\n
$$
k = \frac{1}{(1 - e^{-1})(1 - e^{-2})}
$$
\n(b) $f_X(x) = \int_0^2 f_{XY}(x, y) dy$
\n
$$
= \frac{1}{(1 - e^{-1})} e^{-x}, \quad 0 < x < 1
$$

\n
$$
= 0, \qquad \text{elsewhere}
$$

\n
$$
f_Y(y) = \int_0^1 f_{XY}(x, y) dx
$$

\n
$$
= \frac{1}{(1 - e^{-2})} e^{-y}, \quad 0 < y < 2
$$

\n
$$
= 0, \qquad \text{elsewhere}
$$

(c) Since $f_{XY}(x, y) = f_X(x) f_Y(y)$, X and Y are independent.

3.21 Let X be the driving time in minutes and Y be the time (in minutes) of leaving home after 7:30 a.m. Then f X_1 (x; y) from assemble for the form as shown in the form γ

> $P(missing both trains) = Volume over shaded area$ $=\frac{1}{300}(\frac{1}{2} \times 5 \times 5) = 0.042$

Figure 3.21

$$
3.22 \quad P(X \le 25 \cap Y > 8) = \int_{8}^{\infty} \int_{-\infty}^{25} f_{XY}(x, y) dx dy
$$

$$
= \int_{8}^{\infty} f_{Y}(y) dy \int_{-\infty}^{25} f_{X}(x) dx
$$

$$
= \left[\frac{3}{64} \int_{8}^{9} (9 - y)^{2} dy \right] \left[\frac{2}{2500} \int_{0}^{25} x dx \right]
$$

$$
= 0.0039
$$

3.23 The jpdf of X and Y is

$$
f_{XY}(x, y) = 1, \ 0 < (x, y) < 1
$$
\n
$$
= 0, \ \text{elsewhere}
$$

The required probability is the volume under $f_{XY}(x, y)$ with shaded area, shown below, as base. Hence,

Figure 3.23

3.24 The required probability is the volume under $f_X(x)f_Y(y)$ over the base as shown in the Figure. Hence,

$$
P(X^{2} + Y^{2} \le a^{2}) = \iint_{x^{2}+y^{2} \le a^{2}} f_{X}(x) f_{Y}(y) dx dy
$$

Using polar coordinates $x^2 + y^2 = r^2$, $axay = rara\sigma$

$$
P(X^{2} + Y^{2} \le a^{2}) = \frac{1}{2\pi\sigma^{2}} \int_{0}^{2\pi} \int_{0}^{a} e^{-r^{2}/2\sigma^{2}} r dr d\theta
$$

$$
= 1 - e^{-a^{2}/2\sigma^{2}}
$$

Figure 3.24

3.25
$$
P[\min(X_1, X_2, ..., X_n) \le u] = P(X_1 \le u \cup X_2 \le u \cup ... \cup X_n \le u)
$$

\n
$$
= 1 - P(X_1 > u \cap X_2 > u \cap ... \cap X_n > u)
$$

\n
$$
= 1 - P(X_1 > u)P(X_2 > u) ... P(X_n > u)
$$

\n
$$
= 1 - [1 - F_X(u)]^n
$$

\n
$$
P[\max(X_1, X_2, ..., X_n) \le u] = P(X_1 \le u \cap X_2 \le u \cap ... \cap X_n \le u)
$$

\n
$$
= P(X_1 \le u)P(X_2 \le u) ... P(X_n \le u)
$$

\n
$$
= [F_X(u)]^n
$$

3.26 Let

$$
p_j = \begin{bmatrix} p_{X_j}(1) \\ p_{X_j}(2) \\ \vdots \\ p_{X_j}(7) \end{bmatrix} \quad \text{and } P = [P_{ij}] = [P(X_{k+1} = i | X_k = j)]
$$

(a)

$$
p_3 = P^3 p_0 = P^3 \begin{bmatrix} 0.00 \\ 0.00 \\ 0.04 \\ 0.06 \\ 0.11 \\ 0.28 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.016 \\ 0.035 \\ 0.080 \\ 0.125 \\ 0.415 \\ 0.192 \\ 0.137 \end{bmatrix}
$$

(b) $p_{X_4X_3}(i,j) = p_{X_4X_3}(i|j)p_{X_3}(j)$. Hence,

$$
P_{X_4X_3}(1,1) = p_{X_4X_3}(1|1)p_{X_3}(1) = (0.388)(0.016) = 0.006
$$

and the others follow in a similar fashion. The result is

Table of
$$
p_{X_4X_3}(i,j)
$$

