
CHAPTER VII

7.1 See the solution to Problem 3.23.

7.2 (a) Y = aX

�Y (t) = EfejtY g = Efej(at)Xg = �X (at) =
sin at

at

(b) Y = a+
b

2
+

b

2
X

�Y (t) = EfejtY g = E
n
ejt(a+

b
2 )ej(

bt
2 )X

o

= ejt(a+
b
2 )�X

�
bt

2

�

= ejt(a+
b
2 ) sin

�
bt

2

���
bt

2

�

7.3 Let X = inside sleeve diameter (cm) and Y = rod diameter (cm). Then

fX(x)=
1

0:04
; 1:98 � x � 2:02

= 0 ; elsewhere

fY (y)=
1

0:05
; 1:95 � y � 2:00

= 0 ; elsewhere

fXY (x; y) = fX(x)fY (y)

(a) P (Y < X) =
shaded area

total area

= 1� (0:02)(0:02)=2

(0:04(0:05)

= 0:9

Figure 7.3a

(b) P (X � Y � 0:02) =
shaded area

total area

= 1� (0:04)(0:04)=2

(0:04(0:05)

= 0:6

Figure 7.3b
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7.4 fX(x) =
1p

2�(0:02)
e�(x�2)

2=2(0:02)2 ; �1 � x � 1

fY (y) =
1

0:05
; 1:95 � y � 2:00

= 0 ; elsewhere

fXY (x; y) = fX(x)fY (y)

Figure 7.4

(a) P (Y < X) =

Z
R2

Z
fXY (x; y)dxdy

=

Z 2:00

1:95

Z x

1:95

fXY (x; y)dydx+

Z
1

2:00

Z 2:00

1:95

fXY (x; y)dydx

The �rst integral gives

1

0:05

Z 2:00

1:95

Z x

1:95

fX(x)dydx =
1

0:05

Z 2:00

1:95

fX(x)(x � 1:95)dx

=
1

0:05

Z 2:0

1:95

(x� 2)fX(x)dx +

Z 2:00

1:95

fX(x)dx

=
1

0:05
p
2�(0:02)

Z 0

�0:05

ue�u
2=0:0008du+ FX (2:0)� FX(1:95)

=
�0:0008=2

0:05
p
2�(0:02)

e�u
2=0:0008

����
0

�0:05

+ FU (0)� FU

�
1:95� 2:0

0:02

�

= �0:1526+ (0:5� 1 + 0:9938)

= 0:3412

The second integral = 0:5 by inspection. Hence,

P (Y < X) = 0:3412+ 0:5 = 0:8412

(b) P (X � Y � 0:02) = 0:579 by using similar procedure.

7.5 Equation (6.10) shows that a binomial-distributed r.v. X can be represented by

X = X1 +X2 + : : :+Xn

where Xj ; j = 1; 2; : : : ; n are independent and identically distributed with P (Xj = 1) = p

and P (Xj = 0) = q(p+ q = 1). The mean and variance of X are

mX = np ; �2X = npq

Based upon the Central Limit Theorem, we immediately deduce from the above that,
as n!1, r.v. U de�ned by

U =
X � npp

npq

approaches N(0; 1).

Consider, for example, a binomially distributed r.v. X with n = 15 and p = 0:4. We wish
to calculate P (X = 4).

P (X = 4) =

�
15

4

�
(0:4)4(0:6)15�4 = 0:127
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Using normal approximation, we have

P (X = 4) �= P

�
3:5� 6

1:897
< U � 4:5� 6

1:897

�

= FU (�0:791)� FU (�1:318)
= FU (1:318)� FU (0:791)

= 0:9063� 0:7855

= 0:1208

7.6 (a) fT (450) =
1p
2�40

e�
(450�400)2

3200 = 4:566� 10
�3

(b) P (T � 450) = FT (450) = FU

�
450� 400

40

�
= 0:8944

(c) P (jT �mT j � 20) = P (380 � T � 420) = FT (420)� FT (380)

= FU

�
420� 400

40

�
� FU

�
380� 400

40

�

= FU (0:5)� [1� FU (0:5)]

= 0:383

(d) P (jT �mT j � 20

��T � 300) =
P (jT �mT j � 20 \ T � 300)

P (T � 300)

=
P (jT �mT j � 20)

P (T � 300)
=

0:383

1� FU
�
300�400

40

�
=

0:383

FU (2:5)
=

0:383

0:9938
= 0:3854

7.7 It suÆces to show that
EfjX jg =

p
2=��

for a zero-mean normally distributed r.v. X.

EfjX jg = 1p
2��

Z
1

�1

jxje�x2=2�2dx =
2p
2��

Z
1

0

xe�x
2=2�2dx

=
2p
2��

h
��2e�x2=2�2

i
1

0
=

p
2=��

7.8 Let W = X + Y and Z = X � Y . Then W and Z are normal and we only need to show
that they are uncorrelated.

�11 = E f(W �mW )(Z �mZ)g = E f[(X �mX) + (Y �mY )] [(X �mX)� (Y �mY )]g
= �2X � �2Y = 0 if �2X = �2Y

7.9 (a) Consider the probabilities P (X1 � 45) and P (X2 � 45).

P (X1 � 45) = 1� FX1
(45) = 1� FU

�
45� 40

6

�
= 1� 0:797 = 0:203

P (X2 � 45) = 1� FX2
(45) = 1� FU

�
45� 45

3

�
= 1� 0:5 = 0:5
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Hence, X2 is preferred.

(b) P (X1 � 48) = 0:092

P (X2 � 48) = 0:159

X2 is still preferred.

7.10 It suÆces to show that

�n = 0 ; n odd

= 1(3) � � � (n� 1)�n ; n even

for a zero-mean normally-distributed r.v. X. From Eq. (7.12) we have

�X (t) = e��
2t2=2

Since �n = j�n�
(n)
X (0), we have �1 = 0, �2 = �2, �3 = 0, �4 = 3�4, etc., and Eq. (7.13)

follows.

7.11 Equation (7.38) gives

�X (t) = exp

2
4�1

2

nX
i;j=1

�ijtitj

3
5

=

1X
k=0

(�1)k
2kk!

0
@ nX
i;j=1

�ijtitj

1
A
k

Now

EfX1X2X3g = j�3
�

@3

@t1@t2@t3
�X(t)

�
t=0

Upon partial di�erentiation, all terms in the above expansion vanish for 2k < 3 and,
upon letting t = 0, all terms disappear for which 2k > 3. Hence, EfX1X2X3g = 0.

For EfX1X2X3X4g, we see from the above argument that the only contributing term is
that for which 2k = 4 or k = 2. We have

EfX1X2X3X4g = j�4
�

@4

@t1@t2@t3@t4
�X (t)

�
t=0

= EfX1X2gEfX3X4g+EfX1X3gEfX2X4g+EfX1X4gEfX2X3g

7.12 Let X be the total length.

(a) X is normal with

mX = 4 + 4 = 8 in

�2X = 0:02 + 0:02 = 0:04 in2

(b) P (7:9 � X � 8:1)

= FX (8:1)� FX(7:9)

= FU

�
8:1� 8

0:2

�
� FU

�
7:9� 8

0:2

�
= FU (0:5)� [1� FU (0:5)]

= 2(0:6915)� 1 = 0:383
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7.13 Let Y = X1+X2+X3. Y is normal with mY = mX1
+mX2

+mX3
= 3 and �2Y = �2X1

+�2X2
+�3X3

=

3. Hence,

P (X1 +X2 +X3 > 1) = P (Y > 1) = 1� FY (1)

= 1� FU

�
1� 3p

3

�
= 0:876

7.14 Let Xj ; j = 1; 2; : : : ; 100, be the breaking strength of the jth strand and let Y = X1 +

X2 + � � �+X100. Then, based on the Central Limit Theorem, Y is approximately normal
with mY = (100)(20) = 2000 and �2Y = (100)(16) = 1600. Hence,

P (Y � 2100) = 1� FY (2100) = 1� FU

�
2100� 2000

40

�

= 1� FU (2:5) = 1� 0:9938

= 0:0062

7.15 mY = c1m+ c2m+ � � �+ cnm = m

nX
j=1

cj

�2Y = c21�
2
+ c22�

2
+ � � �+ c2n�

2
= �2

nX
j=1

c2j

In order that mY = m and �2Y = �2, we must have
nP
j=1

cj = 1 and
nP
j=1

c2j = 1. Since"
nP
j=1

cj

#2
>

nP
j=1

c2j if cj's are positive, the above requirements cannot be satis�ed if all cj's

are positive.

7.16 For x � 0, fX(x) = 0

For x > 0,

FX (x) = p(X � x)

= P (�x < [ � x)

= FU (x) � [1� FU (x)]

= 2FU (x)� 1

fX(x) =
dFX (x)

dx
= 2fU(x)

=

r
2

�
e�x

2=2

Hence,

fX(x) =

r
2

�
e�x

2=2 ; x > 0

= 0 ; x � 0
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7.17 (a) FX(x) =

Z Z
R2:x1=x2�x

fX1
(x1)fX2

(x2)dx1dx2

=

Z
1

0

Z x2x

�1

fX1
(x1)fX2

(x2)dx1dx2

+

Z 0

�1

Z
1

x2x

fX1
(x1)fX2

(x2)dx1dx2

=

Z
1

0

FX1
(x2x)fX2

(x2)dx2 +

Z 0

�1

[1� FX1
(x2x)]fX2

(x2)dx2

Figure 7.17

fX(x) =
dFX (x)

dx
=

Z
1

�1

jx2jfX1
(x2x)FX2

(x2)dx2

=
1

2�

Z
1

�1

jx2je�x
2
2(1+x

2)=2dx2

From Problem 7.7, we havep
(1 + x2)p

2�

Z
1

�1

jx2je�x
2
2(1+x

2)=2dx2 =

s
2

�(1 + x2)

Hence,

fX(x) =
1

�(1 + x2)
; �1 � x � 1

(b) See the solution to Problem 4.2(c).

7.18 A solution is given in Problem 5.29.

7.19 Y = eX where X is N(m;�2).

EfY g = EfeXg = �X(t)
��
jt=1

= ejmt��2t2=2
��
jt=1

= em+�2=2
= �Y exp(�2lnY =2)

EfY 2g = Efe2Xg = �X(t)
��
jt=2

= e2m+2�2
= �2Y exp(2�2lnY )

�2Y = EfY 2g �E2fY g = �2Y exp(�2ln Y )
�
exp(�2lnY )� 1

�
= m2

Y [exp(�
2
ln Y )� 1]

7.20 (a) The parameters �X and �2lnX are found from

1 = �X exp(�2lnX=2)

0:09 = 1
2
[exp(�2lnX)� 1]

which gives

�X = 0:958 ; �2lnX = 0:086

P (X > 1:2) = 1� FX(1:2) = 1� FU

�
ln(1:2=0:958)p

0:086

�
= 0:221

(b) Y is lognormal distributed with mY = a+ bmX = a+ b and �2Y = b2�2X = 0:09b2. Hence,

fY (y) = fX

�
y � a

b

��
1

b

�

=
1

0:294
p
2�(y � a)

exp

�
� 1

0:172
ln

2

�
y � a

0:958b

��
; y � a

= 0 ; elsewhere
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7.21 Mean time between arrivals = 1
�

=
1

20(vph)
= 3min

Percentage of time = 2
3 .

7.22 fT (t) =
1

25
e�t=25 ; t � 0

= 0 ; elsewhere

P (T � 35) =

Z
1

35

fT (t)dt = e�35=25 = 0:247

P (at least two still stand) =

�
3

2

�
(0:247)2(0:753) +

�
3

3

�
(0:247)3

= 0:153

7.23 fX(x) =
��

�(�)
x��1e��x ; x � 0

= 0 ; elsewhere

�k = EfXkg+ ��

�(�)

Z
1

0

xk+��1e��xdx

Let �x = y

�k =
1

�k�(�)

Z
1

0

yk+��1e�ydy =
�(� + k)

�k�(�)

(a) mX = �1 =
�(� + 1)

��(�)
=

�

�

�2 =
�(� + 2)

�2�(�)
=

�(� + 1)

�2

and

�2X =
�(� + 1)

�2
� �2

�2
=

�

�2

(b) �3 =
�(� + 3)

�3�(�)
=

�(� + 1)(� + 2)

�3


1 = �3=�
3
= (�3 � 3�1�2 + 2�2

1)=�
3
= 2

p
� > 0

7.24 For x > 0,

FX (x) =

Z x

0

��

(� � 1)!
u��1e��udu = 1�

Z
1

x

�

(� � 1)!
(�u)��1e��udu

Let y = �u. The desired result is obtained by successive integration by parts.

7.25 The r.v. T has a gamma distribution with � = 3 and � = 0:01. Thus,

fT (t) =
(0:01)3

2!
t2e�0:01t ; t � 0

= 0 ; elsewhere

Using the results obtained in Problem 7.24, we have

P (T � 300) = 1� FT (300) = e�(0:01)(300)
�
1 + 3 +

3
2

2

�
= 0:423
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7.26 Let h(t) = �. Then P (t < T � t+ dtjT � t) = �dt. Now

P (t < T � t+ dt
��T � t) =

P (t < T � t+ dt \ T � t)

P (T � t)

=
P (t < T � t+ dt)

P (T � t)
=

fT (t)dt

1� FT (t)

Hence,

fT (t)dt

1� FT (t)
= �dt

or fT (t) = �

�
1�

Z t

0

fT (t)dt

�

Upon di�erentiating both sides of the above, we have

dfT (t)

dt
+ �fT (t) = 0 ; t � 0

With the condition
Z
1

0

fT (t) = 1, the solutions to the di�erential equation is

fT (t) = �e��t ; t � 0

7.27 Y = a+X, g(x) = a+ x and g�1(y) = y � a.

We have

fY (y) = fX
�
g�1(y)

� ����dg�1(y)dy

���� = �e��(y�a) ; y � a

= 0 ; elsewhere

Since Y = a+X, we have

mY = a+mX = a+ 1=�

�2Y = �2X = 1=�2

7.28 Equation (7.28) gives X = U2
1 + U2

2 + � � � + U2
n, where Uj ; j = 1; 2; : : : ; n, are N(0; 1). Let

Xj = U2
j . Then EfXjg = EfU2

j g = 1 and, as seen from Problem 7.11,

EfX2
j g = EfU4

j g = 3E2fU2
j g = 3

�2Xj
= 3� 1 = 2

Hence, mX = n and �2X = 2n.

It thus follows from the Central Limit Theorem that (X � n)=
p
2n tends to N(0; 1) as

n!1.

7.29 FX(j)
(x) = P [at least j of the X's � x]

=

nX
k=j

P [exactly k of the X's � x]

=

nX
k=j

�
n

k

�
pk(1� p)n�k
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where p = P (Xj � x) = FX(x). Hence,

FX(j)
(x) =

nX
k=j

�
n

k

�
[FX (x)]k [1� FX(x)]n�k ; j = 1; 2; : : : ; n

7.30 From Problem 7.29, we have (n = 10),

(a) P (X(10) � 3=4) = FX(10)
(3=4) = [FX (3=4)]10

Since FX (x) = x for 0 � x � 1, FX (3=4) = 3=4, and

P (X(10) � 3=4) = (3=4)10 = 0:056

(b) P (X(9) > 0:5) = 1� FX(9)
(0:5)

= 1�
��

10

9

�
[FX (0:5)]9[1� FX(0:5)] +

�
10

10

�
[FX(0:5)]10

�

= 0:989

7.31 As is seen from the solution to Problem 7.30,

P0(0; t) = exp(�tv=w) ; t � 0

Hence,

FT (t) = 1� p0(0; t) = 1� exp(�tv=w) ; t � 0

and

fT (t) =
dFT (t)

dt
= (v=w)tv�1 exp(�tv=w) ; t � 0

= 0 ; elsewhere

7.32 The structural system is one with (initially) n components in parallel. Let qnk(s) be
the probability that failure will occur to n� k among n initially existing members.

Consider �rst qnn(s) (probability of no failure). Clearly,

qnn(s) = [P (R > s=n)]n = [1� FR(s=n)]
n

For k = 0; 1; 2; : : : ; n� 1, we have

qnk(s) =

�
n

1

�
FR

� s
n

�
pn(n�1)k(s) +

�
n

2

�h
FR

� s
n

�i2
pn(n�2)k(s) + � � �

+

�
n

n� k

�h
FR

� s
n

�in�k
pnkk(s) (1)

where

pijk(s) = the probability that failure occurs to j � k members among currently
existing j members with resisting strength greater than s=i, thus reducing
the number of remaining members from j to k.

We then have

pnkk(s) = [1� FR(s=n)]
k

pijk(s) =

�
j

1

�
[FR(s=j)� FR(s=i)]p

j
(j�1)k(s) +

�
j

2

�
[FR(s=j)� FR(s=i)]

2p
j
(j�2)k(s)

+ � � �+
�

j

j � k

�
[FR(s=j)� FR(s=i)]

j�kp
j
kk(s) ; n � i � j > k
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The substitution of the above into Eq. (1) gives the desired result.

7.33 Let qnk be the desired probability. Then

qnk =

Z
1

0

qnk(s)fS(s)ds

where qnk(s); k = 0; 1; 2; : : : ; n, are given in Problem 7.32.

7.34 For n = 3, we obtain

q33(s) = [1� FR(s=3)]
3

q32(s) = 3FR(s=3)[1� FR(s=2)]
2

q31(s) = f6FR(s=3)[FR(s=2)� FR(s=3)] + 3[FR(s=3)]
2g[1� FR(s)]

q30(s) = 3FR(s=3)[FR(s=2)� FR(s=3)]f2[FR(s)� FR(s=2)] + [FR(s=2)

� FR(s=3)]g+ 3[FR(s=3)]
2
[FR(s)� FR(s=3)] + [FR(s=3)]

3

For this problem, s = 270 and

FR(r) = 0 ; r < 80

= r=20� 4 ; 80 � r � 100

= 1 ; r > 100

Hence,

FR(s) = FR(270) = 1

FR(s=2) = FR(135) = 1

FR(s=3) = FR(90) = 90=20� 4 = 0:5

and

q33(s) = (1� 0:5)3 = 0:125

q32(s) = 0

q31(s) = 0

q30(s) = 3(0:5)3 + 3(0:5)3 + (0:5)3 = 0:875

Hence, it is seen that the structure completely fails with probability 0.875 and is safe
with probability 0.125. No partial failure is possible.

7.35 Required graphs are easily plotted from Eqs. (7.123) and (7.124).

7.36 We see from Eqs. (7.89) and (7.91) that

FY (y) = [FX(y)]n and FZ(z) = 1� [1� FX (z)]n

Let us �rst determine fY Z(y; z). We write

P (Y � y) = P (Y � y \ Z � z) + P (Y � y \ Z > z)

= FY Z(y; z) + P (Y � y \ Z > z)

or

FY Z(y; z) = [FX(y)]n � P (Y � y \ Z > z)

But
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P (Y � y \ Z > z) = P [z < X1 � y \ z < X2 � y \ � � � \ z < Xn � y]

=

nY
j=1

P [z < Xj � y]

Clearly,

P (z < Xj � y) = 0 ; z � y

= FX(y)� FX (z) ; z < y

Hence,
FY Z(y; z) = [FX (y)]n ; z � y

= [FX (y)]n � [FX(y)� FX(z)]n ; z < y

and

fY Z(y; z) =
@FY Z(y; z)

@y@z
= 0 ; z � y

= n(n� 1)[FX (y)� FX(z)]n�2fX(y)fX(z) ; z < y

Now consider S.

FS(s) = P (S � s) = P (Y � Z � s)

=

Z
R2:y�z�s

Z
fY Z(y; z)dydz

=

Z
1

�1

Z
1

y�s

fY Z(y; z)dzdy

Hence,

FS(s) = 0 ; s < 0

=

Z
1

�1

Z y

y�s

n(n� 1)[FX (y)� FX (z)]n�2fX(y)fX(z)dzdy ; s � 0

and

fS(s) =
dFS(s)

ds
= 0 ; s < 0

= n(n� 1)

Z
1

�1

[FX(y)� FX (y � s)]n�2fX(y � s)fX(y)dy ; s � 0

Figure 7.36


