CHAPTER VII

7.1 See the solution to Problem 3.23.
72 (a) Y =aX
¢y (t) = E{e™} = E{e! "X} = px (at) =

sin at

at

(b) Y:a+g+9X
bt

by (t) = E{elV} = E{ejt(zH- 5) (%) X}

()
et (5) 3

7.3 Let X = inside sleeve diameter (cm) and ¥ = rod diameter (cm). Then

1
— . 1.98 <z <2.02
fx(z)= 001’ 98 < < 2.0 :
=0, elsewhere 1 oy Xy
1 r
fr(y)= 005 0 198 Sy <200 (148, 198
0 elsewhere
1L.93F
Ixv(z,y) = fx(@)fv(y)
1 L
h : :
(a) P < X) = shaded area P‘Tﬂ 702 I
total area Figure 7.3a
(0.02)(0.02)/2
= 1= =0.0400.05) Y
oo o o} (2042 x-y= 0.0
(b) P(X -V >0.02) = shaded area (198.1
total area
_,_ (0:00)(0.01)/2 1851
B (0.04(0.05)
i ]
=0.6 198 2072 x

Figure 7.3b
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7.4 fx(z) = me(%2)2/2(0.02)2 ’
fr(y) = 1 , 1.95 <y < 2.00
0.05 =7 =
=0, elsewhere

fxv(z,y) = fx (=) fy(v)
(a) P(Y <X) //ny (z,y)dzdy

2.00

:/ ny(:U y)dydx +
1

.95 1.95

The first integral gives

2.00 1
005/195 195fX( @)dydr = 5=

1 2.0

1
0.05v27(0.02) J_

_ _—0.0008/2  _.2/0.0008
0.05v/27(0.02) —0.05

= —0.1526 + (0.5 — 1 + 0.9938)
=0.3412

0

The second integral = 0.5 by inspection. Hence,

2.00

= 5 [y x|

—o0o<z< 00

2.00 /1.9

2.00

L33

2.00
/ Fxy (@, y)dyda

fx(x)(x —1.95)dx

fx(z)dz

+ Fy(0) — Fur (

P(Y < X) =0.3412+ 0.5 = 0.8412

0
/ ue=" /00008 3y, 4 B (2.0) — Fy (1.95)
0.05

1.95—-2.0
0.02

(b) P(X —Y >0.02) = 0.579 by using similar procedure.

7.5 Equation (6.10) shows that a binomial-distributed r.v. X can be represented by

X=X1+Xo+...+ X,

where X;, j =1,2,...,n are independent and identically distributed with P(X;
and P(X; =0) = q(p+¢=1). The mean and variance of X are

mx =np , 0% =npq

ey

Figure 7.4

93

=1)=p

Based upon the Central Limit Theorem, we immediately deduce from the above that,

as n — oo, r.v. U defined by

approaches N(0,1).

X —np

Vv pq

Consider, for example, a binomially distributed r.v. X with n =15 and p = 0.4. We wish

to calculate P(X =4).

P(X =4)= (15> (0.4)*(0.6)'°~* = 0.127

4
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Using normal approximation, we have

P(X =4)

12

3.5 -6 45-6

<
P( o7 U= 1.897)
F

v (—0.791) — Fiy(—1.318)
Fy(1.318) — Fy(0.791)

= 0.9063 — 0.7855

=0.1208

1  (450—400)>

- ¢ 3200 = 4.566 X ]_073
V2140

(b) P(T < 450) = Fr(450) = Fy (

7.6 (a) fr(450)
450 — 400
40
(c) P(IT —mr| < 20) = P(380 < T < 420) = Fr(420) — Fr(380)

420 — 400 380 — 400
—F, =) _f, (222~
v ( 40 ) v ( 40 )

= Fy(0.5) — [1 — Fy(0.5)]
= 0.383

) = 0.8944

P(|T — <2 T >
(d) P(T - mr| < 20|T > 300) = UL =zl < 2007 2 300)

P(T > 300)
_ P(IT —myp| <20) 0.383
P(T > 300) 1 — Fy (390490)
0.383 _ 0383 _ .o,

= Fy(25)  0.9938

7.7 It suffices to show that
B{|X[} = \/2[ro

for a zero-mean normally distributed r.v. X.
X = o [ et ta = 2 [t
V21 J_so V2ro Jo
2 2 27
= [—026_’” /20 ] =+/2/m0
0

2mo

7.8 Let W=X+Y and Z =X -Y. Then W and Z are normal and we only need to show
that they are uncorrelated.

pin = E{(W —mw)(Z —mz)} = E{[(X —mx) + Y —my)] [X —mx) = (¥ —my)]}

=0% -0y =0 if 0% =0}

7.9 (a) Consider the probabilities P(X; > 45) and P(X» > 45).

45 — 40
6

45 — 45
3

P(X, >45)=1- Fx,(45) =1 - Fy < > =1-0.797 = 0.203

=1-05=0.5

P(X, >45) = 1 — Fx, (45) = 1—FU<
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7.10

7.11

7.12

Hence, X, is preferred.

(b)  P(X; >48) =0.092
P(X, >48) =0.159

X, is still preferred.

It suffices to show that
a, =0, n odd
=1(3)---(n—1)c™ , n even
for a zero-mean normally-distributed r.v. X. From Eq. (7.12) we have
px(t) ==t/
Since a, = j "¢ (0), we have a; = 0, ay = 02, a3 = 0, ay = 30%, etc., and Eq. (7.13)

follows.

Equation (7.38) gives

Now
83

_ 3 Y
E{X1XyX3} = [atlat28t3 qﬁi@)] t=0

Upon partial differentiation, all terms in the above expansion vanish for 2k < 3 and,
upon letting ¢t = 0, all terms disappear for which 2k > 3. Hence, E{X; X, X3} = 0.

For E{X,X>X3X,}, we see from the above argument that the only contributing term is
that for which 2k =4 or £ = 2. We have

LA

BN Xad =07 | 5 araama0m 0

=0

= B{X1 X2} E{ X3 X4} + E{X, X3} E{Xo X4} + B{X1 X4} E{X, X3}

Let X be the total length.

(a) X is normal with
mxy =4+4=81n
0% =0.02+0.02 = 0.04 in
(b) P(7.9< X <8.1)
= Fx(8.1) — Fx(7.9)

81-8 7.9-8
:FU< 0.2 > _FU< 0.2 >
= Fy(0.5) — [1 — Fyy(0.5)]
= 2(0.6915) — 1 = 0.383
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7.13 Let Y = X, + X5+ X3. V is normal with my = mx, +mx, +mx, =3 and o} = 0%, +0%, +0%, =

3. Hence,
P(X1 +X2+X3>].):P(Y>].):].—Fy(].)
1-3
=1—-Fy|——=) =0.876
U( V3 )

7.14 Let X; , j =1,2,...,100, be the breaking strength of the jth strand and let ¥ = X; +
Xo+ -4 X100. Then, based on the Central Limit Theorem, Y is approximately normal
with my = (100)(20) = 2000 and o2 = (100)(16) = 1600. Hence,

P(Y > 2100) = 1 - Fy(2100) = 1 — Fy, (M)

40
=1-Fy(25) =1-0.9938
= 0.0062

7.15 my:clm+02m+---+cnm:m§ ¢
a%:c?a2+c§a2+---+ca =0 c;

n n
In order that my = m and ¢} = o?, we must have Y ¢; =1 and ) ¢ = 1. Since
=1 j=1

2
n n
[ cj] > Y ¢ if ¢;’s are positive, the above requirements cannot be satisfied if all ¢;’s
j=1 =1

]:
are positive.

7.16 For z <0, fx(z)=0

For z > 0,
Fx(z) =p(X <x)
=P(—z<U<ux)
= Fy(z) —[1 - Fy(z)]
= QFU(.’L‘) -1
frte) = PO (o)
— \/?eaUQ/Z
Hence,
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X
AT (8) Fx@) = [ [ fxe0fa(e)dnds, Y
R2:z [z2<z ﬁ\x‘f\x . X
2
:/ / fxi (@) fx, (@2)dwy das L Y
x,

/ /m fxi (1) fx, (22)dz1dzs

N
i N
= /Ooo Fx, (zax) fx, (x2)dzs + /0 [1— Fy, (z22)] fx, (z2)c N %"\

—00

Figure 7.17

) = X8 = [ ) o) P )

1 o0
- %/ |2 2

From Problem 7.7, we have

(\1/—; = / R ey
7T —00

Hence,
1
fX(ﬂf):m ;, —o <z <00
(b) See the solution to Problem 4.2(c).
7.18 A solution is given in Problem 5.29.

7.19 Y =X where X is N(m,o?).
E{Y} = E{eX} = ¢x (t)|jt:1 — 6jmt_(,2,52/2|jt:1

2
"7 = By exp(of, v /2)

E{Y2} = E{62X} = ¢x(t) |jt:2 = e2m+202 = 9%/ eXIF)(2‘712n v)

oy = E{Y?} — E*{Y} = 63 exp(oi,y) [exp(oiy) — 1]
= m¥[exp(oiny) — 1]
7.20 (a) The parameters fx and o2, , are found from
1 = 0x exp(oi, x/2)
0.09 = 1%[exp(af, ) — 1]
which gives
fx = 0.958 , o7 x = 0.086

P(X>12)=1-Fx(12)=1-Fy [%] =0.221

(b) Y is lognormal distributed with my =a+bmx = a+b and o = b>0% = 0.096>. Hence,
1
el = £ (* “) (3)

A= | (6o
0.294v2r(y —a) DL 0172 \0.958b

=0, elsewhere
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7.21 Mean time between arrivals = &

_ 1
~ 20(vph)
Percentage of time = 2.

= 3min

7.22 fr(t) = %e*t/% , t>0

=0, elsewhere

P(T >35) = [ fr(t)dt =e /% =0.247
35

P (at least two still stand) = <‘;’> (0.247)%(0.753) + @) (0.247)3

=0.153
A\
7.23 x) = 2" e >0
=0, elsewhere
A7 e
ap = E{X* +—/ gFtn=le= A2 gy
P= PTG
Let M=y
_ 1 ket .—y . _ L +k)
= sy [, VT = i
_ T+ 1
() mx =01 = 3re =
0, = Ln+2)  n(n+1)
>~ X2I(p) A2
and
s N+l w*_m
X A2 A2 T2
_Tm+3) _nh+1)n+2)
(b) o2 =S5rey ==
T = pz/o® = (a3 — 3aras + 2a3)/0® =2/ >0
7.24 For z > 0,

xr An o0 A
Fx(z :/ u" e Mdy = 1—/ — (A" e My
X@ = o e

Let y = M. The desired result is obtained by successive integration by parts.

7.25 The r.v. T has a gamma distribution with » =3 and A =0.01. Thus,

0.01)3
fT(t) — ( 2') t26—0.01t , tZ 0

=0, elsewhere

Using the results obtained in Problem 7.24, we have

2
P(T > 300) = 1 — Fr(300) = ¢~ (0-01)(300) (1 +3+ %) =0.423
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7.26 Let h(t) = A. Then P(t < T <t+dt|T >t) = Adt. Now
Pt<T<t+dtNT >1)

PA<T<t+dt|T >t)=

P(T > 1)
_Pt<T<t+dt)  fr(t)dt
P(T > t) - 1-Fp(t)
Hence,
frtydt

or fr(t) = |1~ | t it

Upon differentiating both sides of the above, we have

dfr(t)

7 +Afr(t)=0,t>0

With the condition / fr(t) = 1, the solutions to the differential equation is
0
frt)=Xxe™ [ t>0

727 Y=a+X,g9(x)=a+zand g7'(y) =y —a.

We have

—1
fr@) =fx 9 )] ‘dgTy(y)‘ =X My >a

=0, elsewhere

Since Y = a + X, we have
my =a+mx =a+1/A
0% =c% =1/X\2

7.28 Equation (7.28) gives X = U2 + U2 + --- + U2, where U;, j = 1,2,...,n, are N(0,1). Let
X; =U;. Then E{X;} = E{U7} =1 and, as seen from Problem 7.11,

E{X;}=E{U}} =3E*{U;} =3

ok, =3-1=2
Hence, mx = n and o% = 2n.

It thus follows from the Central Limit Theorem that (X —n)/v/2n tends to N(0,1) as

n — 00.

7.29 Fx (z) = Plat least j of the X's <]

Z [exactly k of the X’s < ]

-2 (oo
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7.30

7.31

7.32
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where p = P(X; <) = Fx(z). Hence,

n

P (o) =3 (1) P @I = Pe@P L =12,
From Problem 7.29, we have (n = 10),
(a)  P(Xqo) <3/4) = Fx,,, (3/4) = [Fx (3/4)]'"°
Since Fx(z) =z for 0 <z <1, Fx(3/4) = 3/4, and
P(X(10) < 3/4) = (3/4)'° = 0.056
(b) P(X() >0.5) =1~ Fx,, (0.5)

—1- {(19‘)) [Fx (05)P[1 — Fx(0.5)] + Gg) [Fx(0-5>]10}

=0.989

As is seen from the solution to Problem 7.30,
Py(0,t) = exp(—t’/w) , t >0
Hence,
Fr(t) =1—-po(0,t) =1 —exp(—t"/w) , t >0
and
_ dFr(t)

pran (v/w)t*" " exp(—t°/w) , t >0

fr(t)

=0, elsewhere

The structural system is one with (initially) n components in parallel. Let g,x(s) be
the probability that failure will occur to n — k among n initially existing members.

Consider first g,,(s) (probability of no failure). Clearly,
Gnn(s) = [P(R > s/n)]" = [L = Fr(s/n)]"

For k=0, 1,2,..., n—1, we have

Gk (5) = (?) Fr () Placiyi(s) + @ [Fr (%)]2 Plo—aya(s) +

(") [ (2)] ptato "

+

where

pip(s) = the probability that failure occurs to j —k members among currently
existing ; members with resisting strength greater than s/i, thus reducing
the number of remaining members from j to k.

We then have

pir(s) = [1 = Fr(s/n)]"

Pl ) = (1) (61 = FaCo 0y 2,060 + (3 ) Fils/) = Fils/ Dy 0,0

4 (]ik> [Fr(s/j) _FR(S/l)]]_kpik(S) ,m>12>3>k
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The substitution of the above into Eq. (1) gives the desired result.
7.33 Let ¢, be the desired probability. Then

ok = /0 " () fs(s)ds

where ¢,1(s), k=0,1,2,...,n, are given in Problem 7.32.

7.34 For n =3, we obtain

q33(s) = [1 — Fr(s/3))’

a32(s) = 3Fg(s/3)[1 — Fr(s/2)]?

q31(s) = {6FR(s/3)[Fr(s/2) — Fr(s/3)] + 3[Fr(s/3)]}[1 — Fr(s)]
as0(s) = 3FR(s/3)[Fr(s/2) — Fr(s/3)|{2[Fr(s) — Fr(s/2)] + [Fr(s/2)

— Fr(s/3)]} + 3[Fr(s/3)’[Fr(s) — Fr(s/3)] + [Fr(s/3)]°
For this problem, s =270 and

Fr(r)=0, r < 80
—1/20—4, 80 <r <100
—1, r> 100

Hence,

Fr(s) = Fr(270) = 1
FR(S/Q) = FR(135) =1
Fgr(s/3) = Fr(90) = 90/20 — 4 = 0.5

and
q33(s) = (1 = 0.5)% = 0.125

Hence, it is seen that the structure completely fails with probability 0.875 and is safe
with probability 0.125. No partial failure is possible.

7.35 Required graphs are easily plotted from Eqs. (7.123) and (7.124).
7.36 We see from Eqs. (7.89) and (7.91) that
Fy(y) = [Fx(y)]" and Fz(z)=1-[1-Fx(2)]"
Let us first determine fyz(y,2). We write

PY<y)=PY <ynNnZ<z2)+PY <ynNZ>z)
=Fyz(y,2) + P(Y <yNZ>z)
or
Fyz(y,z) = [Fx()]" - PY <ynZ>2)
But
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PY<yNZ>z)=Plz<Xi1<ynz<Xo<yn---Nz< X, <y

n
=[] Plz < X; <y
j=1

Clearly,
P(Z<X,]Sy):05 ZZZ/
=Fx(y) — Fx(z), 2<y
Hence,
Fyz(y,z)=[Fx()]" , 2>y
=[FxW)]" = [Fx(y) — Fx(2)]" , 2 <y
and OFy2(y. )
fYZ(yaZ):%yZ’ZZO, z>y

=n(n—1[Fx(y) - Fx(2)]" *fx¥)fx(2) ,2 <y
Now consider S.

Fs(s) = P(S <s)=P(Y = Z <)

— [ tvatv.2)iua:

R2y—2<s
Z/O; /yoos fyz(y, 2)dzdy
Hence,
Fs(e) =0, 5<0
= /_O:o /;n(n —D[Fx(y) — Fx(2)]" 2 fx () fx (z)dzdy , s >0
and
fs(s) = ngs(s) =0, e 0

—atn-1) [ T Fx(y) - Fxly - 9" 2fx(y — ) fx)dy , 520

&I‘E
Lt
§ H:\ Y -: =5

¥

Figure 7.36



